您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2013山东高考数学
1绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。共4页,满分150分。考试用时150分钟.考试结束后,将本卷和答题卡一并交回。注意事项:1.答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。3.第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。4.填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+iB.2-iC.5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9(3)已知函数()fx为奇函数,且当x0时,21()fxxx,则f(-1)=()(A)-2(B)0(C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为94,底面积是边长为3的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()(A)512(B)3(C)4(D)6(5)将函数y=sin(2x+φ)的图像沿x轴向左平移8个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)34(B)4(C)0(D)4(6)在平面直角坐标系xOy中,M为不等式组:220210380xyxyxy,所表示的区域上一动点,2则直线OM斜率的最小值为(A)2(B)1(C)13(D)12(7)给定两个命题p,q,若﹁p是q的必要而不充分条件,则p是﹁q的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(8)函数y=xcosx+sinx的图象大致为()(B)(9)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A)243(B)252(C)261(D)279(11)抛物线C1:21(0)2yxpp的焦点与双曲线C2:2213xy的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平等于C2的一条渐近线,则p=(A)316(B)38(C)233(D)433(12)设正实数x,y,z满足x2-3xy+4y2-z=0.则当xyz取得最大值时,212xyz最大值为(A)0(B)1(C)94(D)33第Ⅱ卷(共90分)二.填空题:本大题共4小题,每小题4分,共16分(13)执行右面的程序框图,若输入的∈的值为0.25,则输入的n的值为___.(14)在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥成立的概率为____.(15)已知向量AB与AC的夹角1200,且|AB|=3,|AC|=2,若APABAC,且APBC,则实数的值为_____.(16)定义“正对数”:0,01,lnln,1.xxxx现有四个命题:①若a>0,b>0,则ln()lnbaba②若a>0,b>0,则ln()lnlnabab③若a>0,b>0,则ln()lnlnaabb④若a>0,b>0,则ln()lnlnln2abab其中的真命题有.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分。(17)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=79.(Ⅰ)求a,c的值;(Ⅱ)求sin(A-B)的值。(18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。(Ⅰ)求证:AB//GH;(Ⅱ)求二面角D-GH-E的余弦值4(19)本小题满分12分甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设各局比赛结果互相独立。(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望。(20)(本小题满分12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和Tn,且Tn+12nna=λ(λ为常数),令cn=b2n,(n∈N·).求数列{cn}的前n项和Rn。(21)(本小题满分13分)设函数2()xxfxce(e是自然对数的底数,cR).(1)求()fx的单调区间,最大值;(2)讨论关于x的方程|ln|()xfx的根的个数.(22)(本小题满分13分)椭圆C:22221(0)xyabab)的左、右焦点分别是F1,F2,离心率为32,过F1,且垂直于x轴的直线被椭圆C截得的线段长为l.(Ⅰ)求椭圆C的方程;(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为1211kk定值,并求出这个定值。
本文标题:2013山东高考数学
链接地址:https://www.777doc.com/doc-2976187 .html