您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013年中考数学复习专题讲座十二动点型问题(二)(含答案)
2013年中考数学复习专题动点问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。三、中考考点精讲例1(2012•广元)如图,在矩形ABCD中,AO=3,tan∠ACB=.以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系,设D、E分别是线段AC、OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动.设运动时间为t(秒)(1)求直线AC的解析式;(2)用含t的代数式表示点D的坐标;(3)在t为何值时,△ODE为直角三角形?(4)在什么条件下,以Rt△ODE的三个顶点能确定一条对称轴平行于y轴的抛物线?并请选择一种情况,求出所确定的抛物线的解析式.思路分析:(1)在Rt△AOC中,已知AO的长以及∠ACB的正弦值,能求出OC的长,即可确定点C的坐标,利用待定系数法能求出直线AC的解析式.(2)过D作AO、OC的垂线,通过构建相似三角形来求出点D的坐标.(3)用t表示出OD、DE、OE的长,若△ODE为直角三角形,那么三边符合勾股定理,据此列方程求出对应的t的值.(4)根据(3)的结论能得到t的值,△ODE中,当OD⊥x轴或DE垂直x轴时,都不能确定“一条对称轴平行于y轴的抛物线”,余下的情况都是符合要求的,首先得D、E的坐标,再利用待定系数法求出抛物线的解析式.解:(1)根据题意,得CO=AB=BC•tan∠ACB=4,则A(0,3)、B(4,3)、C(4,0);设直线AC的解析式为:y=kx+3,代入C点坐标,得:4k+3=0,k=﹣∴直线AC:y=﹣x+3.(2)分别作DF⊥AO,DH⊥CO,垂足分别为F、H,则有△ADF∽△DCH∽△ACO∴AD:DC:AC=AF:DH:AO=FD:HC:OC,而AD=3t(其中0≤t≤),OC=AB=4,AC=5,∴FD=AD=,AF=AD=,DH=3﹣,HC=4﹣,∴D(,3﹣).(3)CE=t,E(4﹣t,0),OE=OC﹣CE=4﹣t,HE=|CH﹣CE|=|(4﹣)﹣t|=|4﹣|则OD2=DH2+OH2=(3﹣)2+()2=9t2﹣t+9,DE2=DH2+HE2=(3﹣)2+(4﹣)2=t2﹣38t+25,当△ODE为Rt△时,有OD2+DE2=OE2,或OD2+OE2=DE2,或DE2+OE2=OD2,则(9t2﹣t+9)+(t2﹣38t+25)=(4﹣t)2①,或(9t2﹣t+9)+(4﹣t)2=t2﹣38t+25②,或(t2﹣38t+25)+(4﹣t)2=9t2﹣t+9③,上述三个方程在0≤t≤内的所有实数解为:t1=,t2=1,t3=0,t4=.(4)当DO⊥OE,及DE⊥OE时,即t3=0和t4=时,以Rt△ODE的三个顶点不能确定对称轴平行于y轴的抛物线,其它两种情况都可以各确定一条对称轴平行于y轴的抛物线.当t2=1时,D(,),E(3,0),因为抛物线过O(0,0),所以设所求抛物线为y=ax2+bx,将点D、E坐标代入,求得a=﹣,b=,∴所求抛物线为:y=﹣x2+x(当t1=时,所求抛物线为y=﹣x2+x).点评:本题主要考查了二次函数的应用、相似三角形的性质、勾股定理等重要知识;后面两问的难度较大,注意分类进行讨论.1.(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?2.(2012•日照)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.3.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.1.解:(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;当t=3时,AN=t=5=AB,即N是线段AB的中点;∴N(3,4).设抛物线的解析式为:y=ax(x﹣6),则:4=3a(3﹣6),a=﹣;∴抛物线的解析式:y=﹣x(x﹣6)=﹣x2+x.(2)过点N作NC⊥OA于C;由题意,AN=t,AM=OA﹣OM=6﹣t,NC=NA•sin∠BAO=t•=t;则:S△MNA=AM•NC=×(6﹣t)×t=﹣(t﹣3)2+6.∴△MNA的面积有最大值,且最大值为6.(3)Rt△NCA中,AN=t,NC=AN•sin∠BAO=t,AC=AN•cos∠BAO=t;∴OC=OA﹣AC=6﹣t,∴N(6﹣t,t).∴NM==;又:AM=6﹣t,AN=t(0<t<6);①当MN=AN时,=t,即:t2﹣8t+12=0,t1=2,t2=6(舍去);②当MN=MA时,=6﹣t,即:t2﹣12t=0,t1=0(舍去),t2=;③当AM=AN时,6﹣t=t,即t=;综上,当t的值取2或或时,△MAN是等腰三角形.2.解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.3.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x﹣1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.
本文标题:2013年中考数学复习专题讲座十二动点型问题(二)(含答案)
链接地址:https://www.777doc.com/doc-2978738 .html