您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013年高考数学(理)一轮复习导学案20
学案20函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用导学目标:1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.自主梳理1.用五点法画y=Asin(ωx+φ)一个周期内的简图用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点.如下表所示.XΩx+φy=Asin(ωx+φ)0A0-A02.图象变换:函数y=Asin(ωx+φ)(A0,ω0)的图象可由函数y=sinx的图象作如下变换得到:(1)相位变换:y=sinxy=sin(x+φ),把y=sinx图象上所有的点向____(φ0)或向____(φ0)平行移动__________个单位.(2)周期变换:y=sin(x+φ)→y=sin(ωx+φ),把y=sin(x+φ)图象上各点的横坐标____(0ω1)或____(ω1)到原来的________倍(纵坐标不变).(3)振幅变换:y=sin(ωx+φ)→y=Asin(ωx+φ),把y=sin(ωx+φ)图象上各点的纵坐标______(A1)或______(0A1)到原来的____倍(横坐标不变).3.当函数y=Asin(ωx+φ)(A0,ω0),x∈(-∞,+∞)表示一个振动量时,则____叫做振幅,T=________叫做周期,f=______叫做频率,________叫做相位,____叫做初相.函数y=Acos(ωx+φ)的最小正周期为____________.y=Atan(ωx+φ)的最小正周期为________.自我检测1.(2011·池州月考)要得到函数y=sin2x-π4的图象,可以把函数y=sin2x的图象()A.向左平移π8个单位B.向右平移π8个单位C.向左平移π4个单位D.向右平移π4个单位2.已知函数f(x)=sinωx+π4(x∈R,ω0)的最小正周期为π.将y=f(x)的图象向左平移|φ|个单位长度,所得图象关于y轴对称,则φ的一个值是()A.π2B.3π8C.π4D.π83.已知函数f(x)=sin(ωx+π4)(x∈R,ω0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象()A.向左平移π8个单位长度B.向右平移π8个单位长度C.向左平移π4个单位长度D.向右平移π4个单位长度4.(2011·太原高三调研)函数y=sin2x-π3的一条对称轴方程是()A.x=π6B.x=π3C.x=π12D.x=5π125.(2011·六安月考)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M、N两点,则|MN|的最大值为()A.1B.2C.3D.2探究点一三角函数的图象及变换例1已知函数y=2sin2x+π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y=2sin2x+π3的图象可由y=sinx的图象经过怎样的变换而得到.变式迁移1设f(x)=12cos2x+3sinxcosx+32sin2x(x∈R).(1)画出f(x)在-π2,π2上的图象;(2)求函数的单调增减区间;(3)如何由y=sinx的图象变换得到f(x)的图象?探究点二求y=Asin(ωx+φ)的解析式例2已知函数f(x)=Asin(ωx+φ)(A0,ω0,|φ|π2,x∈R)的图象的一部分如图所示.求函数f(x)的解析式.变式迁移2(2011·宁波模拟)已知函数f(x)=Asin(ωx+φ)(A0,ω0,|φ|π2)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).(1)求f(x)的解析式及x0的值;(2)若锐角θ满足cosθ=13,求f(4θ)的值.探究点三三角函数模型的简单应用例3已知海湾内海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时刻记录的浪高数据:t03691215182124y1.51.00.51.01.51.00.50.991.5经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.(1)根据以上数据,求函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00至晚上20∶00之间,有多少时间可供冲浪者进行运动?变式迁移3交流电的电压E(单位:伏)与时间t(单位:秒)的关系可用E=2203sin100πt+π6表示,求:(1)开始时的电压;(2)最大电压值重复出现一次的时间间隔;(3)电压的最大值和第一次取得最大值时的时间.数形结合思想的应用例(12分)设关于θ的方程3cosθ+sinθ+a=0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a的取值范围;(2)求α+β的值.【答题模板】解(1)原方程可化为sin(θ+π3)=-a2,作出函数y=sin(x+π3)(x∈(0,2π))的图象.[3分]由图知,方程在(0,2π)内有相异实根α,β的充要条件是-1-a21-a2≠32.即-2a-3或-3a2.[6分](2)由图知:当-3a2,即-a2∈(-1,32)时,直线y=-a2与三角函数y=sin(x+π3)的图象交于C、D两点,它们中点的横坐标为76π,∴α+β2=7π6,∴α+β=7π3.[8分]当-2a-3,即-a2∈(32,1)时,直线y=-a2与三角函数y=sin(x+π3)的图象有两交点A、B,由对称性知,α+β2=π6,∴α+β=π3.[11分]综上所述,α+β=π3或α+β=73π.[12分]【突破思维障碍】在解决三角函数的有关问题时,若把三角函数的性质融于函数的图象之中,将数(量)与图形结合起来进行分析、研究,可使抽象复杂的数理关系通过几何图形直观地表现出来,这是解决三角函数问题的一种有效的解题策略.图象的应用主要有以下几个方面:①比较大小;②求单调区间;③解不等式;④确定方程根的个数.如判断方程sinx=x的实根个数;⑤对称问题等.【易错点剖析】此题若不用数形结合法,用三角函数有界性求a的范围,不仅过程繁琐,而且很容易漏掉a≠-3的限制,而从图象中可以清楚地看出当a=-3时,方程只有一解.1.从“整体换元”的思想认识、理解、运用“五点法作图”,尤其在求y=Asin(ωx+φ)的单调区间、解析式等相关问题中要充分理解基本函数y=sinx的作用.2.三角函数自身综合问题:要以课本为主,充分掌握公式之间的内在联系,从函数名称、角度、式子结构等方面观察,寻找联系,结合单位圆或函数图象等分析解决问题.3.三角函数模型应用的解题步骤:(1)根据图象建立解析式或根据解析式作出图象.(2)将实际问题抽象为与三角函数有关的简单函数模型.(3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.(满分:75分)一、选择题(每小题5分,共25分)1.将函数y=sinx-π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式是()A.y=sin12xB.y=sin12x-π2C.y=sin12x-π6D.y=sin2x-π62.(2011·银川调研)如图所示的是某函数图象的一部分,则此函数是()A.y=sinx+π6B.y=sin2x-π6C.y=cos4x-π3D.y=cos2x-π63.为得到函数y=cos2x+π3的图象,只需将函数y=sin2x的图象()A.向左平移5π12个单位长度B.向右平移5π12个单位长度C.向左平移5π6个单位长度D.向右平移5π6个单位长度4.(2009·辽宁)已知函数f(x)=Acos(ωx+φ)(A0,ω0)的图象如图所示,f(π2)=-23,则f(0)等于()A.-23B.-12C.23D.125.(2011·烟台月考)若函数y=Asin(ωx+φ)+m(A0,ω0)的最大值为4,最小值为0,最小正周期为π2,直线x=π3是其图象的一条对称轴,则它的解析式是()A.y=4sin4x+π6B.y=2sin2x+π3+2C.y=2sin4x+π3+2D.y=2sin4x+π6+2题号12345答案二、填空题(每小题4分,共12分)6.已知函数y=sin(ωx+φ)(ω0,-π≤φπ)的图象如图所示,则φ=________.7.(2010·潍坊五校联考)函数f(x)=cos2x的图象向左平移π4个单位长度后得到g(x)的图象,则g(x)=______.8.(2010·福建)已知函数f(x)=3sinωx-π6(ω0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同.若x∈0,π2,则f(x)的取值范围是____________.三、解答题(共38分)9.(12分)已知函数f(x)=Asin(ωx+φ)(A0,ω0,|φ|π2,x∈R)的图象的一部分如下图所示.(1)求函数f(x)的解析式;(2)当x∈[-6,-23]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.10.(12分)已知函数f(x)=Asin(ωx+φ)(A0,0ω≤2且0≤φ≤π)是R上的偶函数,其图象过点M(0,2).又f(x)的图象关于点N3π4,0对称且在区间[0,π]上是减函数,求f(x)的解析式.11.(14分)(2010·山东)已知函数f(x)=sin(π-ωx)·cosωx+cos2ωx(ω0)的最小正周期为π,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间0,π16上的最小值.答案自主梳理1.0-φωπ2-φωπ-φω3π2-φω2π-φω0π2π3π22π2.(1)左右|φ|(2)伸长缩短1ω(3)伸长缩短A3.A2πω1Tωx+φφ2π|ω|π|ω|自我检测1.B2.D3.A4.D5.B课堂活动区例1解题导引(1)作三角函数图象的基本方法就是五点法,此法注意在作出一个周期上的简图后,应向两边伸展一下,以示整个定义域上的图象;(2)变换法作图象的关键是看x轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx+φ=ωx+φω来确定平移单位.解(1)y=2sin2x+π3的振幅A=2,周期T=2π2=π,初相φ=π3.(2)令X=2x+π3,则y=2sin2x+π3=2sinX.列表:X-π6π12π37π125π6X0π2π3π22πy=sinX010-10y=2sin2x+π3020-20描点连线,得图象如图所示:(3)将y=sinx的图象上每一点的横坐标x缩短为原来的12倍(纵坐标不变),得到y=sin2x的图象;再将y=sin2x的图象向左平移π6个单位,得到y=sin2x+π6=sin2x+π3的图象;再将y=sin2x+π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y=2sin2x+π3的图象.变式迁移1解y=12·1+cos2x2+32sin2x+32·1-cos2x2=1+32sin2x-12cos2x=1+sin2x-π6.(1)(五点法)设X=2x-π6,则x=12X+π12,令X=0,π2,π,3π2,2π,于是五点分别为π12,1,π3,2,7π12,1,5π6,0,13π12,1,描点连线即可得图象,如下图.(2)由-π2+2kπ≤2x-π
本文标题:2013年高考数学(理)一轮复习导学案20
链接地址:https://www.777doc.com/doc-2989729 .html