您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2012年武汉市中考数学试卷(解析)
第1页共10页湖北省武汉市2012年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。1.(2012武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A.2.5B.﹣2.5C.0D.3考点:有理数大小比较。解答:解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.(2012武汉)若在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥3考点:二次根式有意义的条件。解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.3.(2012武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2012武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6B.标号大于6C.标号是奇数D.标号是3考点:随机事件。解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2012武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2B.2C.3D.1考点:根与系数的关系。解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.6.(2012武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104B.2.3×105C.0.23×103D.0.023×106考点:科学记数法—表示较大的数。解答:解:23万=230000=2.3×105.故选B.7.(2012武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.10第2页共10页考点:翻折变换(折叠问题)。解答:解:∵△DEF由△DEA翻折而成,∴EF=AE=5,在Rt△BEF中,∵EF=5,BF=3,∴BE===4,∴AB=AE+BE=5+4=9,∵四边形ABCD是矩形,∴CD=AB=9.故选C.8.(2012武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图。解答:解:从左边看得到的是两个叠在一起的正方形.故选D.9.(2012武汉)一列数a1,a2,a3,…,其中a1=,an=(n为不小于2的整数),则a4的值为()A.B.C.D.考点:规律型:数字的变化类。解答:解:将a1=代入an=得到a2==,将a2=代入an=得到a3==,将a3=代入an=得到a4==.故选A.10.(2012武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()第3页共10页A.2.25B.2.5C.2.95D.3考点:加权平均数;扇形统计图;条形统计图。解答:解:总人数为12÷30%=40人,∴3分的有40×42.5%=17人,2分的有8人∴平均分为:=2.95故选C.11.(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③考点:一次函数的应用。解答:解:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100﹣4×(100+2)=92米;5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.12.(2012武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11﹣或1+考点:平行四边形的性质;勾股定理;相似三角形的判定与性质。解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式地:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3,∴CE=6﹣,CF=5﹣3,即CE+CF=11﹣,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,第4页共10页由①知:CE=6+,CF=5+3,∴CE+CF=11+,故选C.二、填空题(共4小题,每小题3分,满分12分)13.tan60°=.考点:特殊角的三角函数值。解答:解:tan60°的值为.14.(2012武汉)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是.考点:众数。解答:解:在这一组数据中43是出现了3次,次数最多,故众数是43.15.(2012武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.考点:反比例函数综合题。解答:解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABO+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.第5页共10页16.(2012武汉)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义。解答:解:当OC与圆A相切(即到C′点)时,∠BOC最小,AC′=2,OA=3,由勾股定理得:OC′=,∵∠BOA=∠AC′O=90°,∴∠BOC′+∠AOC′=90°,∠C′AO+∠AOC′=90°,∴∠BOC′=∠OAC′,tan∠BOC==,随着C的移动,∠BOC越来越大,但不到E点,即∠BOC<90°,∴tan∠BOC≥,三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(2012武汉)解方程:.考点:解分式方程。解答:解:方程两边都乘以3x(x+5)得,6x=x+5,解得x=1,检验:当x=1时,3x(x+5)=3×1×(1+5)=18≠0,所以x=1是方程的根,因此,原分式方程的解是x=1.18.(2012武汉)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.考点:一次函数与一元一次不等式。解答:解:如图,∵将(﹣1,1)代入y=kx+3得1=﹣k+3,∴k=2,即y=2x+3,当y=0时,x=﹣,即与x轴的交点坐标是(﹣,0),由图象可知:不等式kx+3<0的解集是x<﹣.19.(2012武汉)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.第6页共10页考点:全等三角形的判定与性质。解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.20.(2012武汉)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.考点:列表法与树状图法。解答:解:(1)如图所示:则共有16种等可能的结果;(2)由树形图可以看出两次字母相同的概率为=.21.(2012武汉)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.考点:作图-旋转变换;弧长的计算。解答:解:(1)所作图形如上:(2)由图形可得:AA1=,==,故点A经过A1到达A2的路径长为:+.第7页共10页22.(2012武汉)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.考点:三角形的内切圆与内心;三角形的面积;勾股定理;圆周角定理;解直角三角形。解答:(1)解:作直径CD,连接BD,∵CD是直径,∴∠DBC=90°,∠A=∠D,∵BC=4,sin∠A=,∴sin∠D==,∴CD=5,答:三角形ABC外接圆的直径是5.(2)解:连接IC.BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=4,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A==,∴BF=,在Rt△ABF中,由勾股定理得:AF=CF=,AC=2AF=,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴AB×R+BC×R+AC×R=AC×BF,即4×R+4×R+×R=×,∴R=,在△AIF中,AF=,IF=,由勾股定理得:AI=.答:AI的长是.23.(2012武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;第8页共10页(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?考点:二次函数的应用。解答:解:(1)设抛物线的为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=﹣,∴y=﹣x2+11;(2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,∴6=﹣(t﹣19)2+8,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.24.(2012武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).考点:作图—相似变换。解答:解:(1)①△AMN∽△ABC,∴=∵M为AB中点,AB=2,∴AM=,∵BC=6,∴MN=3;②△AMN∽△ACB,=,∵BC=6,AC=4,AM=,∴MN=1.5;(2)①如图所示:②每条对角线处可作4个三角形与原三角形相似,那么共有8个.第9页共10页25.(
本文标题:2012年武汉市中考数学试卷(解析)
链接地址:https://www.777doc.com/doc-2999315 .html