您好,欢迎访问三七文档
第3节氢原子光谱α粒子散射的实验使我们知道原子具有核式结构,但电子在核的周围怎样运动?它的能量怎样变化?这些还要通过其他事实认识.原子中,电子轨道是怎样的?是否跟地球绕太阳运行一样呢?研究途径:光谱早在17世纪,牛顿就发现日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)成分和强度分布的记录,即光谱。摄谱仪可以得到光谱的照片(2)发射光谱可分类:连续光谱和明线光谱。发射光谱(1)物体发光直接产生的光谱叫做发射光谱。(1)连续光谱连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。(2)线状谱只含不连续的亮线的光谱叫做线状谱。线状谱中的亮线叫谱线,各条谱线对应不同波长的光。稀薄气体或金属的蒸气的发射光谱线状谱由游离状态的原子发射也叫原子光谱。每种原子只能发出具有本身特征的某些波长的光,因此线状谱的谱线也叫原子的特征谱线。通过摄谱仪观察到的谱线(3)吸收光谱物体发出的白光通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。各原子的吸收光谱中每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光谱是吸收光谱。光谱发射光谱定义:由发光体直接产生的光谱连续光谱{产生条件:炽热的固体、液体和高压气体发光形成的光谱的形式:连续分布,一切波长的光都有线状光谱{(原子光谱)产生条件:稀薄气体发光形成的光谱光谱形式:一些不连续的明线组成,不同元素的明线光谱不同(又叫特征光谱)吸收光谱定义:连续光谱中某些波长的光被物质吸收后产生的光谱产生条件:炽热的白光通过温度较白光低的气体后,再色散形成的光谱形式:用分光镜观察时,见到连续光谱背景上出现一些暗线(与特征谱线相对应)各种光谱的特点及成因:光谱分析:1、光谱分析:由于每一种元素都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成。这种方法叫做光谱分析。2、光谱分析的的原理:利用发射光谱和吸收光谱。3、光谱分析的优点:非常灵敏而且迅速。4、光谱分析的应用:鉴别物质和确定物质的组成成分,发现新元素和研究天体的化学组成。氢原子是最简单的原子,其光谱也最简单。氢原子光谱221111()3,4,5,...2Rnnm7 巴耳末公式R=1.1010 里德伯常量其他谱系经典理论的困难核外电子绕核运动辐射电磁波电子轨道半径连续变小原子不稳定辐射电磁波频率连续变化原子是稳定的原子光谱是线状谱——分立课堂效果检测:1在实际生活中,我们可以通过光谱分析来鉴别物质和物质的组成成分。例如某样本中一种元素的含量达到10-10g时就可以被检测到。那么我们是通过分析下列哪种谱线来鉴别物质和物质的组成成分的?A连续谱B线状谱C特征谱线D任意一种光谱(BC)2下列说法正确的是:A通过光栅或棱镜可以把光按波长展开,从而获得光的波长成分的记录,这就是光谱。即光谱与光强度无关。B通过光栅或棱镜可以把光按波长展开,从而获得光的波长成分和强度分布记录,这就是光谱。即光谱不仅记录了光的波长分布,还记录了强度分布。C在研究太阳光谱时发现太阳光谱中有许多暗线,这说明了太阳内部缺少对应的元素。D在研究太阳光谱时发现太阳光谱中有许多暗线,这些暗线与某些元素的特征谱线相对应,这说明了太阳大气层内存在对应的元素。(BD)AC3、4.根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱线所对应的n,它们的波长各是什么?氢原子光谱有什么特点?课本P56题2
本文标题:183氢原子光谱.
链接地址:https://www.777doc.com/doc-3023425 .html