您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 汽车维修技术_第一章
第一章汽车零件的损伤第一节零件的磨损第二节零件的变形第三节零件的蚀损第四节零件的疲劳断裂第一节零件的磨损零件工作表面的物质由于表面相对运动而不断损失的现象,称为零件的磨损;机械零件从运行到报废的过程称为正常运行的磨损过程。一般将磨损过程分为三个阶段,即磨合阶段、稳定磨损阶段和剧烈磨损阶段,零件磨损量与时间示意图如图1-1-1所示。各磨损阶段的特点是:磨合阶段(OA);由于新的摩擦副表面具有一定的粗糙度,真实接触面积较小,因此,磨合阶段表面逐渐被磨平,真实接触面积也逐渐增大,同时也由于不平度的峰顶发生塑性变形而产生冷作硬化,所以磨损速度由大逐渐变小,到达A点时,正常工作条件已经形成。人们可以根据磨合阶段的特点,选择合理的磨合规范,如磨合载荷、转速、时间和润滑剂等参数,可以以最短的时间、最低的磨损量达到良好的磨合要求,提前过渡到稳定磨损阶段。下一页返回第一节零件的磨损稳定磨损阶段(AB):这一阶段摩擦副间隙达到最佳状态,工作表面磨合质量好,润滑充分。因此,机械零件表面磨损极为缓慢而稳定,这是发挥机械性能、提高机械寿命的重要阶段。剧烈磨损阶段(B以后):这一阶段的特性是磨损进程十分迅速,这是由于摩擦副的工作条件恶化,零件几何形状改变,配合间隙增大,润滑条件变坏,机件产生异常噪声和振动,机械效率下降,工作温度迅速升高,零件容易发生破坏性事故,最终导致零件失效,使机械报废。上一页下一页返回第一节零件的磨损一、磨料磨损磨料磨损是由硬的颗粒或硬的突起物,在摩擦过程中引起零件工作面材料脱离的现象。磨料磨损是最常见的磨损形式,据统计,在各类磨损中,磨料磨损占一半左右。因此,了解磨料磨损的规律及提高零件抗磨料磨损的方法,对延长汽车零件的使用寿命有重大的意义。关于磨料磨损产生的机理,目前有微量切削、疲劳破坏和压痕等三种假说。各种类型的磨料磨损中,都可以分别用不同的假说加以解释。上一页下一页返回第一节零件的磨损1.微量切削假说它认为磨料磨损是由磨粒的棱角在外力作用下,对零件表面的切削过程引起的,对于脆性材料产生细小切屑,而韧性材料则产生卷曲状切削。2.疲劳破坏假说它认为磨料磨损是由于在磨料颗粒冲刷动能和交变正向压力作用下,使塑性材料的表面挤出层状或鳞片状剥落物,脆性材料的表面产生裂纹,引起表面疲劳碎片脱落;从而导致零件表面材料的疲劳破坏。上一页下一页返回第一节零件的磨损3.压痕假说它认为塑性较好的材料,在磨料颗粒的正向应力作用下,压人零件工作表面时,零件表面层的材料发生塑性流动。因塑性流动而凸起时表面层材料很容易磨损,从而产生呈片状、层状的脱落。影响磨料磨损的因素有:磨料、零件表面的材料和单位压力等。上一页下一页返回第一节零件的磨损二、黏着磨损摩擦副相对运动时,由于固相焊合,接触表面的材料从一个表面转移到另一个表面的现象称为黏着磨损。黏着磨损机理与黏着摩擦机理是一致的,在黏着处被剪断时,如发生金属转移就将出现黏着磨损。那么金属是如何转移的呢?从微观结构角度来看,金属表面仍然是粗糙的,两表面靠在一起,也只有少数孤立的微凸体相接触。在负荷的作用下,两个表面互相接触的突出处,局部产生很高的压力和温度,如果此压力造成的应力超过材料屈服强度时,微凸体就产生塑性变形,直到真实接触面积增大到足以支持所加的负荷为止。在没有其他表面膜存在的情况下,这些突出处接触面将互相黏结在一起。上一页下一页返回第一节零件的磨损如果有少量污染物和表面膜,就可以阻止这种单纯由负荷引起的砧结。但由于摩擦面间相对切向运动的作用会除去或破坏由污染物形成的薄膜,因而某些突出处接触面仍会出现冷焊现象。摩擦面相对滑动时就会剪断砧结点,同时,又会产生新的砧结点。在黏结点被剪断时,如果剪断的部位刚好在原来的交界面上,那么就不会出现磨损。如果剪断的位置不是原来的交界面,那时金属就会从这个表面转移到另一表面上,在进一步受到摩擦时,一些转移的金属会被摩擦下来,金属表面便呈现出轻微磨损、擦伤、撕脱等黏着磨损现象。这种黏着、撕脱(剪断)、再砧着的循环过程,就构成了黏着磨损,严重时可将摩擦副咬死。上一页下一页返回第一节零件的磨损影响黏着磨损的因素有:零件的材料、负载的大小、摩擦副的滑动速度、摩擦副表面的粗糙度和温度的影响等。减轻和防止黏着磨损的措施有:合理选择材料;保持良好的润滑;进行表面处理;提高修理质量。上一页下一页返回第一节零件的磨损三、表面疲劳磨损在齿轮、滚动轴承、钢轨与轮箍及凸轮副的摩擦过程中由于交变接触压应力的作用,使材料表面疲劳而产生物质损失的现象称为表面疲劳磨损,简称疲劳磨损。表面疲劳磨损分为非扩展性和扩展性两类。非扩展性表面疲劳磨损是指:新的摩擦表面上,接触点减少,单位面积上的压力较大,容易产生小麻点。随着接触的扩大,单位面积的实际压力降低,或因塑性好,表面硬度高使小麻点不能继续扩展,零件可继续正常工作。上一页下一页返回第一节零件的磨损扩展性表面疲劳磨损是指:当作用在两接触面上的交变压应力较大时,由于材料塑性稍差或润滑剂选择不当,在走合期就可能产生了小麻点,在以后的运行中小麻点发展成痘斑状凹坑,以使零件失效。表面疲劳磨损是表面在有摩擦存在的情况下,同时承受交变接触压应力,使表面产生裂纹并继续发展而成的。它与材料一般疲劳破坏的区别是存在摩擦、磨损作用,表层发生塑性变形和发展的现象,并受到润滑剂的作用。上一页下一页返回第一节零件的磨损在滚动接触过程中由于交变负荷的作用,表面层的应力和摩擦力引起材料表层的塑性变形,导致表层硬化,最后在表面出现初始裂纹。该初始裂纹由表面向里发展,其裂纹扩展方向与滚动方向的倾角由摩擦力大小决定,通常第一批裂纹与表面约呈30。倾角分布。同时,由于润滑剂楔人裂纹之中,若滚动物体的运动方向与裂纹端部的方向一致,当滚动物体接触到裂纹裂口时将裂纹自封住,裂纹中的润滑剂被堵塞在裂纹内,使裂纹内壁产生巨大的压力,迫使裂纹向前发展。经过交变加载后,裂纹发展到一定深度,并呈悬臂梁状态,在载荷反复作用下而折断,形成痘斑状凹坑。表面疲劳磨损的影响因素有:零件材料、表面硬度、表面粗糙度、润滑油的茹度。上一页下一页返回第一节零件的磨损减轻零件表面疲劳磨损的途径有:①合理选用材料。选用的材料应含杂质少,纯净,含碳量适度,碳化物尺寸要小,球形为好,分布要均匀。同时,表面要进行适当的处理,以保证渗碳层的厚度和零件心部的强度,才能减少疲劳裂纹的产生,提高抗疲劳磨损的性能。②提高零件表面的硬度和减少粗糙度,都可以提高其疲劳磨损的寿命。③合理选择润滑剂,保证良好的润滑状态,是提高抗疲劳磨损能力的有效措施。上一页下一页返回第一节零件的磨损四、氧化磨损与微动磨损1.氧化磨损氧化磨损是最广泛的一种磨损形态,在汽车零件的各摩擦副中普遍地存在着氧化磨损。它不管在何种摩擦过程中,无沦摩擦速度、接触压力的大小,有无润滑情况下都会发生,其特征是在金属的摩擦表面沿运动方向形成匀细的磨痕。对钢铁材料由于摩擦热的作用,可能形成黑色Fe3O4、和松脆的FeO磨屑。当摩擦副一方的凸起部分与另一方做相对运动时,在产生塑性变形的同时有氧气扩散到变形层内形成氧化膜,而这种氧化膜在遇到第二个凸起部分时有可能剥落,使新露出来的金属表面重新被氧化。这种氧化膜不断被除去,又反复形成的过程就是氧化磨损。上一页下一页返回第一节零件的磨损2.微动磨损在零件的嵌合部位、静配合处,它们之间虽然没有宏观的相对位移,但在外界变动负荷和振动影响下,却会产生微小的滑动,此时表面上产生大量的微小氧化物磨损粉末,由此造成的磨损称为微动磨损。由于微动磨损集中在局部地区,又因两摩擦表面永不脱离接触,磨损物不易往外排出,故兼有氧化磨损、磨料磨损和黏着磨损的作用。在微动磨损产生处往往形成蚀坑(即咬蚀),其结果不仅使零件精度、性能下降,更严重的会引起应力集中导致疲劳损坏。上一页下一页返回第一节零件的磨损在摩擦副表面之间接触压力作用下,接合表面微凸体产生塑性变形,并发生金属的黏着,黏着处在外界小振幅(振幅小于100m,一般为2-20m)振动的反复作用下将其剪切,黏附金属脱落,剪切处表面被氧化。对于钢铁零件,氧化反应生成物以Fe2O3主,所以磨屑呈红褐色。由于两摩擦表面是紧密配合的,磨屑不易排出,留在接合处的磨屑起磨料作用,形成蚀坑(即麻点),从而加速了微动磨损的进程。这样循环不止,最终导致零件表面破坏。当振动应力足够大时,微动磨损处会成为疲劳裂纹的核心,可能引起零件的断裂。因此,微动磨损是一种复合型的磨损。上一页返回第二节零件的变形零件质点位置的变化,使零件尺寸和形状发生改变的现象称为零件的变形。近年来,通过修理实践发现,许多总成虽然将各组成零件磨损部位加以修复,恢复到其原来的尺寸、形状和配合质量,但组装以后却不能达到预期的效果,常常达不到对总成的技术要求。投人使用后,寿命往往缩短一半左右。有的将变速箱齿轮、轴承和轴全部更换新件之后,响声仍不能消失。经进一步研究,发现这些现象大多是由于零件变形,特别是基础零件变形造成的。气缸体、变速器、桥壳等基础零件变形,使其相互位置精度遭到破坏,影响了总成各组成零件的相互关系。下一页返回第二节零件的变形如气缸体变形可能引起气缸轴线与曲轴轴线的不垂直度,曲轴轴线与凸轮轴轴线的不平行度,曲轴主轴承座孔的不同轴度,气缸体上、下表面的不平行度,气缸前后端面对曲轴轴线的不垂直度,气缸轴线与气缸体下平面的不垂直度等的改变。同样,变速器壳体变形将引起上、下轴承座孔轴线的不平行度和前、后两端面的不平度的变化;桥壳变形将引起桥壳轴中心线的变化。这些变化将使总成技术状态变坏,总成寿命缩短。经过使用或长期存放备用的基础零件几乎都有超出标准的变形。上一页下一页返回第二节零件的变形由于基础零件的变形,破坏了组装在这个基础零件上的所有零件的相互关系,使它们的使用寿命缩短很多。但是,由于基础零件一般形状比较复杂,相互位置尺寸的测量不太方便,变形对于机械工作状况和寿命的影响不容易直接看出,所以变形的问题还没有引起修理工作者的重视。目前,汽车大修时,基础零件的变形情况很少检查,大修以后零件变形情况依然如故;组装以后发现不正常现象时,也不从基础零件变形方面查找原因。因此,零件变形特别是基础零件变形,已经成为修理质量低、大修周期短的一个重要原因。上一页下一页返回第二节零件的变形一、零件变形的原因零件在使用中的变形通常是由三方面的原因引起的,即内应力、外载荷和温度。1.内应力有些零件在制造加工时尚能保证配合表面间的正确位置,但经过一段时间运行以后,便产生了不符合技术条件的较大变形,这主要是由于对零件毛坯未进行时效处理或时效处理不当,引起材料内部组织结构变化产生内应力造成的。同样,零件在从高温冷却下来的过程中,由于零件连接部分体积变化不均匀且互相牵制,会产生内应力。上一页下一页返回第二节零件的变形当内应力小于弹性极限时,将以残余内应力的形式存在于零件之中,若对其加工、热处理或使用,将破坏原来内应力的平衡,引起内应力的重新分布,使零件产生变形,如内应力超过零件材料的强度极限时,零件将发生断裂。2.外载荷零件在使用过程中,由于外载荷的作用,也可能产生引起破坏配合表面正确位置的变形,尤其是在汽车满载或超载时,在恶劣的道路条件行驶,对基础零件的个别部位变形影响更大。上一页下一页返回第二节零件的变形有些零件的变形是由于个别紧固件结构布置不合理引起的。如变速器后壁的变形是由手制动的制动力通过螺纹连接传递到刚度不够大的变速器壳后壁造成的,而变速器前壁变形是由变速器四点悬臂固定造成的,后桥减速器壳侧壁的变形是轴承座和承受被动圆锥齿轮轴向分力的侧盖紧固结构不够恰当引起的。这些变形将导致轴线平行度、重合度超限,破坏表面的相互位置,使零件磨损严重,使用寿命降低。上一页下一页返回第二节零件的变形3.温度金属材料的弹性极限随温度的升高而降低,同时,在高温作用下内应力松弛现象严重,所以在温度较高的条件下工作的零件更容易变形。如气缸体在外载荷和高温的共同作用下,往往产生变形,从而破坏其配
本文标题:汽车维修技术_第一章
链接地址:https://www.777doc.com/doc-303032 .html