您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 2007-2013山东高考数学压轴题汇总(文理)
2007-2013山东高考数学压轴题汇总(文理)文科圆锥曲线(2007山东,22,14分)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左、右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.(2008山东,22,14分)已知曲线C1:+=1(ab0)所围成的封闭图形的面积为4,曲线C1的内切圆半径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.(i)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(ii)若M是l与椭圆C2的交点,求△AMB的面积的最小值(2009山东,22,14分)设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E.(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;(Ⅱ)已知m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程;(Ⅲ)已知m=.设直线l与圆C:x2+y2=R2(1R2)相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.(2010山东,22,14分)如图,已知椭圆+=1(ab0)过点,离心率为,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2.(i)证明:-=2;(ii)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.(2011山东,22,14分)在平面直角坐标系xOy中,已知椭圆C:+y2=1.如图所示,斜率为k(k0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).(Ⅰ)求m2+k2的最小值;(Ⅱ)若|OG|2=|OD|·|OE|,(i)求证:直线l过定点;(ii)(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(2012山东,21,12分)如图,椭圆M:+=1(ab0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(1)求椭圆M的标准方程;(2)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.(2013山东,22,14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设=t,求实数t的值.文科导数(2007山东,21,12分)设函数f(x)=ax2+blnx,其中ab≠0.证明:当ab0时,函数f(x)没有极值点;当ab0时,函数f(x)有且只有一个极值点,并求出极值.(2008山东,21,12分)设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.(Ⅰ)求a和b的值;(Ⅱ)讨论f(x)的单调性;(Ⅲ)设g(x)=x3-x2,试比较f(x)与g(x)的大小.(2010山东,21,12分)已知函数f(x)=lnx-ax+-1(a∈R).(Ⅰ)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≤时,讨论f(x)的单调性.(2011山东,21,12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.(2012山东,22,13分)已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x0,g(x)1+e-2.(2013山东,21,12分)已知函数f(x)=ax2+bx-lnx(a,b∈R).(Ⅰ)设a≥0,求f(x)的单调区间;(Ⅱ)设a0,且对任意x0,f(x)≥f(1).试比较lna与-2b的大小.理科圆锥曲线(2007山东,21,12分)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.(2008山东,22,14分)如图,设抛物线方程为x2=2py(p0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A、B.(Ⅰ)求证:A、M、B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,-2p)时,|AB|=4.求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p0)上,其中,点C满足=+(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.(2009山东,22,14分)设椭圆E:+=1(a,b0)过M(2,),N(,1)两点,O为坐标原点.(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,说明理由.(2010山东,21,12分)如图,已知椭圆+=1(ab0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.(2011山东,22,14分)已知动直线l与椭圆C:+=1交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(Ⅰ)证明:+和+均为定值;(Ⅱ)设线段PQ的中点为M,求|OM|·|PQ|的最大值;(Ⅲ)椭圆C上是否存在三点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.(2012山东,21,13分)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.(2013山东,22,13分)椭圆C:+=1(ab0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(Ⅰ)求椭圆C的方程;(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连结PF1,PF2.设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明+为定值,并求出这个定值.理科导数(2007山东,22,14分)设函数f(x)=x2+bln(x+1),其中b≠0.(Ⅰ)当b时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln-都成立(2008山东,21,12分)已知函数f(x)=+aln(x-1),其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.(2009山东,21,12分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与对城B的影响度之和.记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k.当垃圾处理厂建在弧的中点时,对城A和城B的总影响度为0.065.(Ⅰ)将y表示成x的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.(2010山东,22,14分)已知函数f(x)=lnx-ax+-1(a∈R).(Ⅰ)当a≤时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2-2bx+4.当a=时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2).求实数b的取值范围.(2011山东,21,12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c3)千元,设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.(2012山东,22,13分)已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)f'(x),其中f'(x)为f(x)的导函数.证明:对任意x0,g(x)1+e-2.(2013山东,21,13分)设函数f(x)=+c(e=2.71828…是自然对数的底数,c∈R).(Ⅰ)求f(x)的单调区间、最大值;(Ⅱ)讨论关于x的方程|lnx|=f(x)根的个数.
本文标题:2007-2013山东高考数学压轴题汇总(文理)
链接地址:https://www.777doc.com/doc-3078126 .html