您好,欢迎访问三七文档
黎集一中八年级备课组教学设计17.1.1反比例函数的意义备课人:吴伶俐教学目标知识与技能1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想过程与方法经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。情感态度与价值观培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。重点理解反比例函数的概念,能根据已知条件写出函数解析式难点理解反比例函数的概念教学过程教学设计与师生互动备注一、创设情境、导入新课1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?问题提出:电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?学生小组合作讨论。概念:如果两个变量x,y之间的关系可以表示成)0(kkxky为常数,的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。学生探究反比例函数变量的相依关系,领会其概念。二、联系生活、丰富联想做一做1.一个矩形的面积为202cm,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数吗?为什么?学生先独立思考,再进行全班交流。2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?学生先独立思考,再同桌交流,而后大组发言。3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1212113…y322-1……(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。学生先独立练习,而后再同桌交流,上讲台演示。三、举例应用创新提高:例1.(补充)下列等式中,哪些是反比例函数黎集一中八年级备课组教学设计(1)3xy(2)xy2(3)xy=21(4)25xy(5)xy23(6)31xy(7)y=x-4分析:根据反比例函数的定义,关键看上面各式能否改写成xky(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是xxy31,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m取什么值时,函数23)2(mxmy是反比例函数?分析:反比例函数xky(k≠0)的另一种表达式是1kxy(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。解得m=-2例3.(补充)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5(1)求y与x的函数关系式(2)当x=-2时,求函数y的值分析:此题函数y是由y1和y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、y2与x的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意y1与x和y2与x的函数关系中的比例系数不一定相同,故不能都设为k,要用不同的字母表示。略解:设y1=k1x(k1≠0),xky22(k2≠0),则xkxky21,代入数值求得k1=2,k2=2,则xxy22,当x=-2时,y=-5四、随堂练习1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为2.若函数28)3(mxmy是反比例函数,则m的取值是3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是,当x=-3时,y=5.函数21xy中自变量x的取值范围是五、课后练习已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值答案:y=4课堂总结与反思:反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。黎集一中八年级备课组教学设计17.1.2反比例函数的图象和性质(1)教学目标知识与技能1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。过程与方法结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容注意让学生体会数形结合的思想方法。情感态度与价值观以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。重点会作反比例函数的图象;探索并掌握反比例函数的主要性质。难点探索并掌握反比例函数的主要性质。教学过程教学设计与师生互动备注第一步:课堂引入提问:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?方法与步骤——利用描点作图;列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。描点:依据什么(数据、方法)找点?连线:在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。第二步:探索新知:探索活动1反比例函数xy6与xy6的图象.注意强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴探索活动2反比例函数xy6与xy6的图象有什么共同特征?反比例函数图象的特征及性质:反比例函数xky(k≠0)的图象是由两个分支组成的曲线。当0k时,图象在一、三象限,在每一象限内,y随x的增大而减小;当0k时,图象在二、四象限,在每一象限内,y随x的增大而增大。反比例函数xky(k≠0)的图象关于直角坐标系的原点成中心对称。第三步;应用举例:例1.(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?黎集一中八年级备课组教学设计分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy(k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件略解:∵32)1(mxmy是反比例函数∴m2-3=-1,且m-1≠0又∵图象在第二、四象限∴m-1<0解得2m且m<1则2m例2.(补充)如图,过反比例函数xy1(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()(A)S1>S2(B)S1=S2(C)S1<S2(D)大小关系不能确定分析:从反比例函数xky(k≠0)的图象上任一点P(x,y)向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积kxyS,由此可得S1=S2=21,故选B第四步:随堂练习1.已知反比例函数xky3,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2.函数y=-ax+a与xay(a≠0)在同一坐标系中的图象可能是()3.在平面直角坐标系内,过反比例函数xky(k>0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为第五步:课后练习1.若函数xmy)12(与xmy3的图象交于第一、三象限,则m的取值范围是2.反比例函数xy2,当x=-2时,y=;当x<-2时;y的取值范围是;当x>-2时;y的取值范围是3.已知反比例函数yaxa()226,当x0时,y随x的增大而增大,求函数关系式答案:3.xya25,5黎集一中八年级备课组教学设计比较正比例函数和反比例函数的性质正比例函数反比例函数解析式图像直线双曲线位置k>0,一、三象限;k<0,二、四象限k>0,一、三象限k<0,二、四象限增减性k>0,y随x的增大而增大k<0,y随x的增大而减小k>0,在每个象限y随x的增大而减小k<0,在每个象限y随x的增大而增大17.1.2反比例函数的图象和性质(2)教学目标知识与技能1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法过程与方法经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。情感态度与价值观提高学生的观察、分析的能力和对图形的感知水平,使学生从整体上领悟研究函数的一般要求。重点理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题难点学会从图象上分析、解决问题,理解反比例函数的性质。教学过程教学设计与师生互动备注第一步:复习引入:1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?第二步:应用举例:例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数xky(k<0)图象上,则a、b、c的大小关系怎样?分析:由k<0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且-1>-2,故b>a>0;又C在第四象限,则c<0,所以b>a>0>c说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。例2.(补充)如图,一次函数y=kx+b的图象与反比例函数xmy的图象交于A(-2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围(0)ykxk(0)kykx黎集一中八年级备课组教学设计分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式xy2,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。例3:已知变量y与x成反比例,且当x=2时y=9(1)写出y与x之间的函数解析式和自变量的取值范围。分析:要确定一个反比例函数xky的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?在例3的教学中可作如下启发:(1)电流、电阻、电压之间有何关系?(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?(3)前灯的亮度取决于哪个变量的大小?如何决定?先让学生尝试
本文标题:17章教案
链接地址:https://www.777doc.com/doc-3100352 .html