您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (word详细解析版)2012年广东省中考数学试卷
2012年广东省中考数学试卷详细解析一.选择题(共5小题)1.(2011河南)﹣5的绝对值是()A.5B.﹣5C.D.﹣考点:绝对值。解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.(2012广东)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104考点:科学记数法—表示较大的数。解答:解:6400000=6.4×106.故选B.3.(2012广东)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8考点:众数。解答:解:6出现的次数最多,故众数是6.故选C.4.(2012广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.5.(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16考点:三角形三边关系。解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.二.填空题(共5小题)6.(2012广东)分解因式:2x2﹣10x=2x(x﹣5).考点:因式分解-提公因式法。解答:解:原式=2x(x﹣5).故答案是:2x(x﹣5).7.(2012广东)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.(2012广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:509.(2012广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。解答:解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.10.(2012广东)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).考点:扇形面积的计算;平行四边形的性质。解答:解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.三.解答题(共12小题)11.(2012广东)计算:﹣2sin45°﹣(1+)0+2﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。解答:解:原式=﹣2×﹣1+=﹣.12.(2012广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.考点:整式的混合运算—化简求值。解答:解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.13.(2012广东)解方程组:.考点:解二元一次方程组。解答:解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此不等式组的解为:.14.(2012广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.考点:作图—基本作图;等腰三角形的性质。解答:解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相较于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.15.(2012广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质。解答:证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO,∴AB=CD,∴四边形ABCD是平行四边形.16.(2012广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2=7200.解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.17.(2012广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.考点:反比例函数综合题。解答:解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),则∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).18.(2012广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题。解答:解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.19.(2012广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:an==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.考点:规律型:数字的变化类。解答:解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100的=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.20.(2012广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.考点:列表法与树状图法;分式有意义的条件;分式的化简求值。解答:解:(1)用树状图表示(x,y)所有可能出现的结果如下:(2)∵求使分式+有意义的(x,y)有(﹣1,﹣2)、(﹣1,﹣2)、(﹣2,﹣1)、(﹣2,﹣1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=使分式的值为整数的(x,y)有(﹣2,﹣2)、(﹣1,﹣1)、(﹣1,﹣1)、(﹣1,﹣1)、(﹣1,﹣1)5种情况,∴使分式的值为整数的(x,y)出现的概率是.21.(2012广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质;解直角三角形。解答:(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在:△ABG≌△C′DG中,∵,∴△ABG≌△C′DG;(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.22.(2012广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).考点:二次函数综合题。解答:解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)S△AEC=AE•OC=m,S△AED=s=m2;则:S△EDC=S△AEC﹣S△AED=﹣m2+m=﹣(m﹣)2+;∴△CDE的最大面积为,此时,AE=m=,BE=AB﹣AE=.过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:=,即:=∴EF=;∴以E点为圆心,与BC相切的圆的面积S⊙E=π•EF2=.
本文标题:(word详细解析版)2012年广东省中考数学试卷
链接地址:https://www.777doc.com/doc-3111275 .html