您好,欢迎访问三七文档
论文题目:土钉在拉拔状态下的受力变形特性分析演讲人:陈伟指导老师:朱鸿鹄南京大学金陵学院课题的主要研究内容•根据目前土钉支护的研究现状,通过做实验的方法对土钉进行力学变形特性数值分析,在与理论知识进行对比分析。根据土钉与土体间剪应力相对位移关系曲线,建立了土钉与土体间应力传递的力学模型。利用截面上的平衡条件,推导了有别于传统假设的作用在土钉上的应力分布及剪应力表达式。课题的意义•土钉在拉拔荷载作用下的力学特性,包括全长范围的应力分布和极限拉拔力,精确的界面剪应力分布是预测极限拉拔力的关键。所以目前主要研究土钉-土界面剪应力-剪切位移三者关系。虽然目前数值模拟技术的高速发展,但要精确、真实地模拟土钉-土的相互作用,进而模拟应力分布极限拉拔力必须先从理论角度对其进行地研究,进而推动数值技术的提高。土钉拉拔实验研究•为了了解土体在连续加载下,应变随位移的变化情况,实验采用分级加载的方式对土钉施加拉拔力,观察土钉与土体界面在恒定荷载下的变形,从而得出土钉在拉拔作用下力学特性。•实验采用GFRP材料。试验步骤•实验过程:•1.准备过程:在1.5m长的GFRP材料土钉表面均匀布置了FBG这种光纤传感器并且每隔50cm在同一侧放置一个应变计来测量土钉表面的应变。如下图:•准备一个200×80×80cm的箱子,并向箱子中填入砂土并夯实,填至一半时将土钉从箱子右端插入后继续埋土并夯实,直向至填满为止。土通钉左侧过钢丝绳与滑轮相连,滑轮以龙门架固定。架好百分表,百分表1测量土钉相对于地面的位移,百分表2测量箱子相对于地面的位移。其中砂土的粘聚力为0.4kpa,内摩擦角为32.8。如下简易图:•实验过程:记录下百分表初始读数和空载时百分表读数后,开始向吊箱加载,以后每个1小时加入相同质量25kN的荷载,采用砝码加载。每一级荷载下,每隔一定时间记录读数。实验数据•实验测得数据如下图,并求出拉拔力(其中拉拔力F=G×1.972×9.8/1000KN,E=20Gpa,D=30mm.)•Distance050100150FBG1FBG3FBG5FBG7load(kg)Force(kN)load119851250.48314load2361891500.96628load35827151751.44942load479392111001.93256load595452621252.4157load6115523141502.89884load7137613741753.38198•根据公式求得轴力,如下表;2)2(DENDistance050100150FBG1FBG3FBG5FBG7load1N(kN)0.2669080.11579010.0637389860.01284836load2N(kN)0.5029720.24812160.1333797290.019856556load3N(kN)0.817330.38163470.2160043410.015184425load4N(kN)1.1186390.55531980.2986289520.01752049load5N(kN)1.336910.63211940.3682696950.028032785load6N(kN)1.6263560.7313680.4390907910.063073765load7N(kN)1.9359690.86842570.527617160.0607377•假如A与B,B与C,C与D之间距拉拔端的距离(x)与轴力(N)成线性关系•画出距拉拔端的距离与轴力关系折线坐标系,如下图;00.511.522.5050100150200距拉拔端距离轴力load1load2load3load4load5load6load7•假如A与B,B与C,C与D之间距拉拔端的距离(x)与轴力(N)不成线性关系,对四个点进行拟合,得出下列表格以及函数表达式,如下图;距拉拔端距离-轴力y7=-1E-06x3+0.0003x2-0.0343x+1.936y6=-9E-07x3+0.0003x2-0.0285x+1.6264y5=-7E-07x3+0.0002x2-0.022x+1.3369y4=-4E-07x3+0.0001x2-0.0165x+1.1186y3=-4E-07x3+0.0001x2-0.0134x+0.8173y2=-2E-07x3+6E-05x2-0.0074x+0.503y1=-1E-07x3+4E-05x2-0.0047x+0.266900.511.522.5050100150200XNload1load2load3load4load5load6load7多项式(load7)多项式(load6)多项式(load5)多项式(load4)多项式(load3)多项式(load2)多项式(load1)•如下图所示,在土钉上取一长度为dx的单元进行分析,取x方向为作用力的正方向,根据单元的平衡条件(见图2b)有•上述所得距拉拔端的距离与轴力关系函数方程进行取点,并根据求得剪应力()0xxxxNdNNDdx1xxdNDdxNx+dNxNxdx(b)1xxdNDdxx(距拉拔端的距离)τ1(kPa)τ2(kPa)τ3(kPa)τ4(kPa)τ5(kPa)τ6(kPa)τ7(kPa)00.0498940.0786620.14225050.1751592360.2335456480.302547770.36411950.0457270.0724520.13195330.1648619960.212871550.27141720.333068100.041720.0665610.1222930.1552016990.1933121020.241719750.303609150.0378720.0609870.11326960.1461783440.1748673040.213455410.275743200.0341830.0557320.10488320.1377919320.1575371550.18662420.249469250.0306530.0507960.09713380.1300424630.1413216560.161226110.224788300.0272820.0461780.09002120.1229299360.1262208070.137261150.201699350.0240710.0418790.08354560.1164543520.1122346070.11472930.180202400.0210190.0378980.0777070.1106157110.0993630570.093630570.160297450.0181260.0342360.07250530.1054140130.0876061570.073964970.141985500.0153930.0308920.06794060.1008492570.0769639070.055732480.125265550.0128180.0278660.06401270.0969214440.0674363060.038933120.110138600.0104030.0251590.06072190.0936305730.0590233550.023566880.096603650.0081480.0227710.05806790.0909766450.0517250530.009633760.08466700.0060510.0207010.0560510.088959660.045541401-0.00286620.07431750.0041140.0189490.05467090.0875796180.040472399-0.01393310.065552800.0023350.0175160.05392780.0868365180.036518047-0.02356690.058386850.0007170.0164010.05382170.0867303610.033678344-0.03176750.05281390-0.000740.0156050.05435240.0872611460.031953291-0.0385350.04883295-0.002040.0151270.05552020.0884288750.031342887-0.04386940.046444100-0.003180.0149680.05732480.0902335460.031847134-0.04777070.045648105-0.004170.0151270.05976650.0926751590.03346603-0.05023890.046444110-0.004990.0156050.0628450.0957537150.036199575-0.05127390.048832115-0.005650.0164010.06656050.0994692140.040047771-0.05087580.052813120-0.006160.0175160.0709130.1038216560.045010616-0.04904460.058386125-0.00650.0189490.07590230.108811040.05108811-0.04578030.065552130-0.006690.0207010.08152870.1144373670.058280255-0.04108280.07431135-0.006710.0227710.08779190.1207006370.066587049-0.03495220.08466140-0.006580.0251590.09469210.1276008490.076008493-0.02738850.096603145-0.006290.0278660.10222930.1351380040.086544586-0.01839170.110138150-0.005840.0308920.11040340.1433121020.098195329-0.00796180.125265•由上述表格画出距拉拔端的距离与剪应力关系的坐标系:距拉拔端的距离-剪应力-0.1-0.0500.050.10.150.20.250.30.350.4050100150200X剪应力load1load2load3load4load5load6load7结论•本文主要考虑了土钉与土体表面剪切破坏过程中随荷载的增加而发生的应变现象,基于应变推导了简单的土钉内部轴力随距拉拔端位移的变化规律和土钉与土体表面剪应力的随距拉拔端位移的解,从而实现了对土钉在拉拔状态下的受力变形特性分析研究。从以上两组实验数据中我们可以得出下列结论:•拉拔端发生的应变变化最大,并随着距拉拔端位移增大而减小。•根据应变,我们可以计算出轴力、剪应力,并进行拟合。我们发现;轴力在拉拔端数值最大,并随着距拉拔端位移增大而减小;剪应力先随着距拉拔端位移增大而减小,后随着距拉拔端位移增大而增大。谢谢
本文标题:毕业论文演讲稿
链接地址:https://www.777doc.com/doc-3112073 .html