您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (典型题)2014高考数学二轮复习知识点总结概率
1概率【高考考情解读】1.古典概型和几何概型的基本应用是高考的重点,选择题或填空题主要以考查几何概型、古典概型为主,试题难度较小,易于得分.2.解答题型中的古典概型问题常常与概率的基本运算性质,如互斥事件的概率加法公式、对立事件的减法公式等综合考查,试题难度不大,易于得满分.3.近几年高考题对概率问题的命制愈加地倾向与统计问题综合考查,涉及的统计问题有抽样、样本估计总体、回归分析和独立性检验,试题难度中等,考查知识点的同时也侧重考查逻辑思维能力、知识的综合应用能力和理解、分析问题的能力.1.概率的五个基本性质(1)随机事件A的概率:0≤P(A)≤1.(2)必然事件的概率为1.(3)不可能事件的概率为0.(4)如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)如果事件A与事件B互为对立事件,那么P(A∪B)=P(A)+P(B)=1,即P(A)=1-P(B).2.两种常见的概型(1)古典概型①特点:有限性,等可能性.②概率公式:P(A)=事件A中所含的基本事件数试验的基本事件总数.(2)几何概型①特点:无限性,等可能性.②概率公式:P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.考点一古典概型例1(2013·山东)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;2(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.解(1)从身高低于1.80的4名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.设“选到的2人身高都在1.78以下”为事件M,其包括的事件有3个,故P(M)=36=12.(2)从小组5名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.设“选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)”为事件N,且事件N包括事件有:(C,D),(C,E),(D,E)共3个.则P(N)=310.求古典概型概率的步骤(1)反复阅读题目,收集题目中的各种信息,理解题意;(2)判断试验是否为古典概型,并用字母表示所求事件;(3)利用列举法求出总的基本事件的个数n及事件A中包含的基本事件的个数m;(4)计算事件A的概率P(A)=mn.(1)(2012·安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率等于()A.15B.25C.35D.45答案B解析利用古典概型求解.设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为:(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个.两球颜色为一白一黑的基本事件有:(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.∴其概率为615=25.故选B.(2)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心3有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.1136B.518C.16D.49答案D解析根据题目条件知所有的数组(a,b)共有62=36组,而满足条件|a-b|≤1的数组(a,b)有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),共有16组,根据古典概型的概率公式知所求的概率为P=1636=49.故选D.(3)盒中有6个小球,其中3个白球,记为a1,a2,a3,2个红球,记为b1,b2,1个黑球,记为c1,除了颜色和编号外,球没有任何区别.①求从盒中取一球是红球的概率;②从盒中取一球,记下颜色后放回,再取一球,记下颜色,若取白球得1分,取红球得2分,取黑球得3分,求两次取球得分之和为5分的概率.解①所有基本事件为:a1,a2,a3,b1,b2,c1共计6种.记“从盒中取一球是红球”为事件A,事件A包含的基本事件为:b1,b2,∴P(A)=26=13.∴从盒中取一球是红球的概率为13.②记“两次取球得分之和为5分”为事件B,总事件包含的基本事件为:(a1,a1),(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,c1),(a2,a1),(a2,a2),(a2,a3),(a2,b1),(a2,b2),(a2,c1),(a3,a1),(a3,a2),(a3,a3),(a3,b1),(a3,b2),(a3,c1),(b1,a1),(b1,a2),(b1,a3),(b1,b1),(b1,b2),(b1,c1),(b2,a1),(b2,a2),(b2,a3),(b2,b1),(b2,b2),(b2,c1),(c1,a1),(c1,a2),(c1,a3),(c1,b1),(c1,b2),(c1,c1),共计36种.而事件B包含的基本事件为:(b1,c1),(b2,c1),(c1,b1),(c1,b2),共计4种.∴P(B)=436=19.∴“两次取球得分之和为5分”的概率为19.考点二几何概型例2(2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪4亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A.14B.12C.34D.78答案C解析设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x、y,x、y相互独立,由题意可知0≤x≤40≤y≤4|x-y|≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P(|x-y|≤2)=S正方形-2S△ABCS正方形=4×4-2×12×2×24×4=1216=34.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(1)在区间[0,2]上任取两个实数a,b,则函数f(x)=x3+ax-b在区间[-1,1]上有且仅有一个零点的概率是()A.18B.14C.34D.78(2)(2012·湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π答案(1)D(2)A解析(1)因为f′(x)=3x2+a,由于a≥0,故f′(x)≥0恒成立,故函数f(x)在[-1,1]上单调递增,故函数f(x)在区间[-1,1]上有且5只有一个零点的充要条件是f-,f,即a+b+1≥0,a-b+1≥0.设点(a,b),则基本事件所在的区域是0≤a≤2,0≤b≤2,画出平面区域,如图所示,根据几何概型的意义,所求的概率是以图中阴影部分的面积和以2为边长的正方形的面积的比值,这个比值是78.故选D.(2)方法一解题关键是求出空白部分的面积,用几何概型求解.设分别以OA,OB为直径的两个半圆交于点C,OA的中点为D,如图,连接OC,DC.不妨令OA=OB=2,则OD=DA=DC=1.在以OA为直径的半圆中,空白部分面积S1=π4+12×1×1-π4-12×1×1=1,所以整体图形中空白部分面积S2=2.又因为S扇形OAB=14×π×22=π,所以阴影部分面积为S3=π-2.所以P=π-2π=1-2π.方法二连接AB,由S弓形AC=S弓形BC=S弓形OC可求出空白部分面积.设分别以OA,OB为直径的两个半圆交于点C,令OA=2.由题意知C∈AB且S弓形AC=S弓形BC=S弓形OC,所以S空白=S△OAB=12×2×2=2.又因为S扇形OAB=14×π×22=π,所以S阴影=π-2.所以P=S阴影S扇形OAB=π-2π=1-2π.考点三互斥事件与对立事件例3某项活动的一组志愿者全部通晓中文,并且每个志愿者还都通晓英语、日语和韩语中的一种(但无人通晓两种外语).已知从中任抽一人,其通晓中文和英语的概率为12,通6晓中文和日语的概率为310.若通晓中文和韩语的人数不超过3人.(1)求这组志愿者的人数;(2)现在从这组志愿者中选出通晓英语的志愿者1名,通晓韩语的志愿者1名,若甲通晓英语,乙通晓韩语,求甲和乙不全被选中的概率.解(1)设通晓中文和英语的人数为x,通晓中文和日语的人数为y,通晓中文和韩语的人数为z,且x,y,z∈N*,则xx+y+z=12,yx+y+z=310,0z≤3,解得x=5,y=3,z=2,所以这组志愿者的人数为5+3+2=10.(2)设通晓中文和英语的人为A1,A2,A3,A4,A5,甲为A1,通晓中文和韩语的人为B1,B2,乙为B1,则从这组志愿者中选出通晓英语和韩语的志愿者各1名的所有情况为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(A5,B1),(A5,B2),共10种,同时选中甲、乙的只有(A1,B1)1种.所以甲和乙不全被选中的概率为1-110=910.求解互斥事件、对立事件的概率问题时,一要先利用条件判断所给的事件是互斥事件,还是对立事件;二要将所求事件的概率转化为互斥事件、对立事件的概率;三要准确利用互斥事件、对立事件的概率公式去计算所求事件的概率.(2013·江西)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1、A2、A3、A4、A5、A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X0就去打球,若X=0就去唱歌,若X0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解(1)X的所有可能取值为-2,-1,0,1.(2)数量积为-2的有OA2→·OA→5,共1种;数量积为-1的有OA1→·OA5→,OA1→·OA6→,OA2→·OA4→,OA2→·OA6→,OA3→·OA4→,OA3→·OA5→,共6种;数量积为0的有OA1→·OA3→,OA1→·OA4→,OA3→·OA6→,OA4→·OA6→,共4种;数量积为1的有OA1→·OA2→,OA2→·OA3→,OA4→·OA5→,OA5→·OA6→,共4种.7故所有可能的情况共有15种.所以小波去下棋的概率为P1=715;因为去唱歌的概率为P2=415,所以小波不去唱歌的概率为P=1-P2=1-415=1115.1.互斥事件与对立事件的关系(1)对立一定互斥,互斥未必对立;(2)可将所求事件化为互斥事件A、B的和,再利用公式P(A+B)=P(A)+P(B)来求,也可通过对立事件公式P(A)=1-P(A)来求P(A).2.古典概型与几何概型古典概型特点①有限性②等可能性计算公式P(A)=A包含的基本事件个数m总的基本事件个数n几何概型特点①无限性②等可能性计算公式P(A)=构成事件A的区域长度面积或体积试验的全部
本文标题:(典型题)2014高考数学二轮复习知识点总结概率
链接地址:https://www.777doc.com/doc-3112150 .html