您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > (精选)八年级上册一次函数几何代数综合题
一次函数综合题1、(2008•咸宁)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′(2)的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.2、如图所示,直线y=kx+b与两坐标轴分别相交于A(-1,0)、B(0,2)两点.(1)求直线AB的函数解析式;(2)过点C(3,0)的直线l与直线AB相交于点P,若△APC的面积等于6,求点P的坐标.3、如图,直线y=2x+3和直线y=-2x-1分别交y轴于点A、B,两直线交于点C.(1)求两直线交点C的坐标;(2)求△ABC的面积;(3)在直线y=-2x-1上能否找到点P,使得S△APC=6,若能,请求出点P的坐标,若不能请说明理由.4、(2006•台州如图,)直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.5、P(x,y)在第二象限内,且点P在直线y=2x+12上,已知A(-8,0),设△OPA的面积为S.(1)求S与x的函数关系式,并求x的取值范围;(2)当S=12时,求点P的坐标;(3)P运动到什么位置时(P的坐标),△OPA是以AO为底的等腰三角形.6、已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.7、如图,在正方形ABCD中,A(1,1)、B(3,1),点E是DC的中点.(1)求直线AE的解析式;(2)设直线l与y轴交点的坐标为(0,b),当直线l∥AE且与边AB、CD同时有交点时,直接写出b的取值范围.8、如图,已知点C(4,0)是正方形AOCB的一个顶点,直线PC交AB于点E,若E是AB的中点.(1)求点E的坐标;(2)求直线PC的解析式;(3)若点P是直线PC在第一象限的一个动点,当点P运动到什么位置时,图中存在与△AOP全等的三角形.请画出所有符合条件的图形,说明全等的理由,并求出点P的坐标.9、已知A(4,0)、B(0,4)(1)求直线AB的解析式;(2)点P从A点出发沿x轴向O点运动,点Q从O点出发沿y轴向B点运动,两点同时出发且运动速度相同.设AP=t﹙0<t<4﹚,求直线PQ的解析式;(3)M是线段AB的中点,在(2)的条件下,试判断△MPQ的形状,并说明理由.10、如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线y=34x-38经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(-23,0)且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.11、如图,正方形ABCD、正方形A1B1C1D1、正方形A2B2C2D2均位于第一象限内,它们的边平行于x轴或y轴,其中点A、A1、A2在直线OM上,点C、C1、C2在直线ON上,O为坐标原点,已知点A的坐标为(3,3),正方形ABCD的边长为1.(1)求直线ON的表达式;(2)若点C1的横坐标为4,求正方形A1B1C1D1的边长;(3)若正方形A2B2C2D2的边长为a,则点B2的坐标为()A.(a,2a)B.(2a,3a)C.(3a,4a)D.(4a,5a)12、如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.(1)判断△AOB的形状.(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.
本文标题:(精选)八年级上册一次函数几何代数综合题
链接地址:https://www.777doc.com/doc-3114643 .html