您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 1.1.1变化率问题学案
共3页第1页1.1.1变化率问题学案【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。【学习重点】通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;1.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法;【学习难点】平均变化率的概念.【自学点拨】一.阅读章引言,并思考章引言写了几层意思?二、问题提出问题1气球膨胀率问题:气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是__________.如果将半径r表示为体积V的函数,那么___________.⑴当V从0增加到1时,气球半径增加了___________.气球的平均膨胀率为___________.⑵当V从1增加到2时,气球半径增加了___________.气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?___________.问题2高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.思考计算:5.00t和21t的平均速度v在5.00t这段时间里,___________.;在21t这段时间里,___________.探究:计算运动员在49650t这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,)0()4965(hh,所以___________.,虽然运动员在49650t这段时间里的平均速度为)/(0ms,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.(1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的hto共3页第2页运动状态.②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(xxxfxf表示,称为函数f(x)从x1到x2的平均变化率2.若设12xxx,)()(12xfxff(这里x看作是对于x1的一个“增量”可用x1+x代替x2,同样)()(12xfxfyf)3.则平均变化率为xfxy___________.思考:观察函数f(x)的图象平均变化率xf1212)()(xxxfxf表示什么?(1)一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量Δx=x2-x1;②求函数的增量Δf=f(x2)-f(x1);③求平均变化率2121()()fxfxfxxx.注意:①Δx是一个整体符号,而不是Δ与x相乘;②x2=x1+Δx;③Δf=Δy=y2-y1;三.典例分析例1.已知函数f(x)=xx2的图象上的一点)2,1(A及临近一点)2,1(yxB,则xy.解:例2.求2xy在0xx附近的平均变化率。解:四.课堂练习1.质点运动规律为32ts,则在时间)3,3(t中相应的平均速度为.x1x2Oyy=f(x)f(x1)f(x2)△y=f(x2)-f(x1)x△x=x2-x1共3页第3页2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.3.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.五.回顾总结六.补充实例例1在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?变式:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?例2情境:现有南京市某年3月和4月某天日最高气温记载.时间3月18日4月18日4月20日日最高气温3.5℃18.6℃33.4℃观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:七.作业①看书,复习今天内容;②思考问题:如何能更精细地刻画运动员的运动状态?需要增加什么量?③预习下节内容.20303421020300温度T(℃)210时间t(d)
本文标题:1.1.1变化率问题学案
链接地址:https://www.777doc.com/doc-3121676 .html