您好,欢迎访问三七文档
1一次函数复习基础知识导航1、一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,;②k﹤O时,.(2)b的正、负决定直线与y轴交点的位置;①当b>0时,;②当b<0时,;③当b=0时,.(3)由于k,b的符号不同,直线所经过的象限也不同;并会画出草图①当k>0,b>0时,;②当k>0,b﹥O时,;③当k﹤O,b>0时,;④当k﹤O,b﹤O时,.4)若两直线平行,则k1k2一、一次函数概念1.已知y=(m-2)x32m是正比例函数,则m=.2.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______时,它是正比例函数.3.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y轴上的是_____.(填写序号)4.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.5.已知y+5与3x+4成正比例,当x=1时,y=2.(1)求y与x之间的函数关系式;(2)求当x=1时的函数值.二、一次函数图像和性质1.已知正比例函数y=kx(k≠0)的图象经过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变22、如图11-59所示,若直线l是一次函数y=kx+b的图象,则()A.k>0,b>0B.k>0,b<OC.k<O,b<OD.k<O,b>03.若直线y=kx+b经过第二、三、四象限,则k,b;若经过第一、三、四象限,则k,b;若经过第一、二、三象限,则k,b.4.已知直线y=kx+b过点A(x1,y1)和B(x2,y2),若k<0,且x1<x2,则y1y2(填“>”或“<”号)5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是6.将直线y=x+4向下平移2个单位,得到的直线的解析式为.7.无论m为何实数,直线y=2x+m与y=-x+4的交点不可能在()A、第一象限B、第二象限C、第三象限D、第四象限8.若一次函数y=ax+1-a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则│a-1│+2a=______.9.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:①这是一次________米赛路;②甲、乙两人先到达终点的是_________;③在这次赛跑中甲的速度为________,乙的速度为________.10.如图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量只要不超过_________千克,就可以免费托运.11.已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?312.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1y2;②y1≥y2(3)利用图象求出:当x取何值时有:①y10且y20;②y10且y20三、待定系数法求函数解析式用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.1.请你写出一个经过点(1,1)的函数解析式.2.在函数32xy中,当自变量x满足时,图象在第一象限.3.一个函数的图象经过点(1,2),且y随x的增大而增大而这个函数的解析式是(只需写一个)4.已知直线12ykx和两坐标轴相交所围成的三角形面积为24,求k值。5.已知直线y=3x+b和两坐标轴相交所围成的三角形面积为24.求b值6.如果点A(—2,a)在函数y=21x+3的图象上,那么a的值等于例1拖拉机耕地时,每小时的耗油量假定是个常量,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q(升)与工作时间t(时)之间的函数关系式;(2)画出函数图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?4例2已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象.例3.已知一次函数y=(2m+4)x+(3-n).⑴当m、n是什么数时,y随x的增大而增大?⑵当m、n是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m、n的取值范围.练习1.如图11-55所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A点的坐标为A(2,0),且OA=OB,试求一次函数的解析式.2.已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求:(1)函数的解析式;(2)将该一次函数的图象向上平移3个单位,直接写出平移后的函数解析式.53.直线3kxy与y轴交于A点,与x轴的正半轴交于B点。等边三角形OCD的顶点C、D分别在线段AB、OB上,且OD=DB,求k的值.4.如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.(1)求k的值;(2)求△ABC的面积.yACBDOx65.如图,一次函数y=223x的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90∘,求过B、C两点直线的解析式.6.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限,且2BOCS,求点C坐标.77.已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式;(2)若△APB的面积为3,求m的值.8.如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求点D的坐标;(2)求直线L2的解析表达式;(3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.8四、一次函数的应用1、一次函数与二元一次方程例1利用图象解二元一次方程组 ② ①.5,22yxyx2、函数y=-x与函数y=x+1的图象的交点坐标为()3、.直线y=x+4和直线y=-x+4与x轴围成的三角形的面积是()4.已知直线l1:y=k1x+b1和直线l2:y=k2x+b2(1)当__________时,l1与l2相交于一点,这个点的坐标是________.(2)当__________时,l1∥l2,此时方程组2211bxkybxky的解的情况是________.(3)当__________时,l1与l2重合,此时方程组2211bxkybxky的解的情况是________.5、已知两直线y1=2x-3,y2=6-x(1)在同一坐标系中作出它们的图象.(2)求它们的交点A的坐标.(3)根据图象指出x为何值时,y1>y2;x为何值时,y1<y2.(4)求这两条直线与x轴所围成的△ABC的面积.变式训练1、(2006,江西省)已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式;(2)若△APB的面积为3,求m的值.92、如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求点D的坐标;(2)求直线L2的解析表达式;(3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.3、如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5)。(1)直接写出B点坐标;(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1∶1两部分,求直线CD的解析式;(3)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1∶3两部分,求直线CD的解析式;2、一次函数解决实际问题例1一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x,每月所获利润为y(元).(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?变式训练1、(2004·四川)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获xOCAByyyyyyyyyyy10利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?例22、(2004·河北)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表.每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.变式训练1、A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?11例3(2004·南通)小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏,另一种是40瓦(即0.04千瓦)的白炽灯,售价18元/盏,假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦·时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和一盏白炽灯的费用y(元);(注:费用=灯的售价+电费)(2)小刚想在这两种灯中选购一盏;①当照明时间是多少时,使用两种灯的费用一样多?②分别画出两个函数的图象,利用函数图象判断:a.照明时间在什么范围内,选用白炽灯费用低;b.照明时间在什么范围内,选用节能灯费用低.(3)小刚想在这两种灯中选购两盏.假定照明时间是3000小时,使用寿命就是2800小时,请你帮助他设计一种费用最低的选灯方案,并说明理由.变式训练1已知A地在B地的正南方向3km处,甲、乙两人同时分别从
本文标题:一次函数基础练习
链接地址:https://www.777doc.com/doc-3125073 .html