您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据库 > 03凸优化理论与应用_凸优化
信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn1凸优化理论与应用第三章凸优化信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn2优化问题的基本形式优化问题的基本描述:0minimize(),subjectto()0,1,...,()0,1,...,niifxxfximhxjpR优化变量nxR()0ifx不等式约束等式约束()0ihx.0mp无约束优化信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn3优化问题的基本形式最优化值*0inf{()|()0,1,...,,()0,1,...,}iipfxfximhxip**0()pfx最优化解优化问题的域01domdompmiiiiDfh可行点(解)(feasible)满足约束条件xD可行域(可解集)所有可行点的集合信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn4局部最优问题局部最优问题02minimize(),subjectto()0,1,...,()0,1,...,,0niifxxfximhxjpxzRRR信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn5优化问题的等价形式(1)定理:若000minimize()(),subjectto()()0,1,...,()()0,1,...,niiiiifxfxxfxfximhxhxipR0,0,...,,0,1,...,iiimip则原优化问题与以下优化问题等价信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn6优化问题的等价形式(2)定理:设为一一对应,且00minimize()(()),subjectto()(())0,1,...,()(())0,1,...,niiiifzfzzfzfzimhzhzipR:nnRR则原优化问题与以下优化问题等价(dom)D信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn7优化问题的等价形式(3)定理:设为严格单调增函数;满足当且仅当;满足当且仅当。则原优化问题与以下优化问题等价000minimize()(()),subjectto()(())0,1,...,()(())0,i1,...,niiiiiifzfzzfzfzimhzhzpR0:RR1,...,m()0iu0u1,...,p()0iu0u信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn8优化问题的等价形式(4)定理:原优化问题与以下优化问题等价0minimize(),subjectto()0,1,...,0()0,1,...,niiiifxxfxsimshxjpR称为松弛变量s信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn9优化问题的等价形式(5)定理:设满足等式成立,当且仅当。则原优化问题与以下优化问题等价0minimize(()),subjectto(())0,1,...,nifzxfzimR:knRR()0,1,...,ihxjp()xz信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn10可分离变量优化问题性质:,inf(,)inf()xyxfxyfx其中()inf(,)yfxfxy可以分离变量定理:优化问题0121122minimize(,),subjectto()0,1,...,()0,1,...,niifxxxfximfximR12,xx信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn11优化问题的上半图形式0minimizesubjectto()0,()0,1,...,()0,1,...,iitfxtfximhxjp信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn12凸优化问题的基本形式凸优化问题的基本描述:0minimize(),subjectto()0,1,...,()0,1,...,niifxxfximhxjpR为仿射函数()ihx为凸函数()ifx若为准凸函数,则优化问题称为准凸优化问题。0()fx性质:凸优化问题的可行域是凸集。信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn13凸优化问题的例例:2201221122112minimize()subjectto()/(1)0()()0fxxxfxxxhxxx等价于凸优化问题2201211112minimize()subjectto()0()0fxxxfxxhxxx信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn14凸优化问题的局部最优解定理:凸优化问题的局部最优解均是全局最优解。信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn15凸优化问题最优解的微分条件定理:设为凸优化问题的可行域,可微。则为最优解当且仅当成立。0()fx0()()0,TfxyxyXXx定理:非约束凸优化问题中,若可微。则为最优解当且仅当成立。0()fxx0()0fx信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn16凸优化问题的等价形式则为最优解当且仅当,且存在向量满足定理:设凸优化问题仅有等式约束x0()0TfxAv0minimize(),subjecttonfxxAxbRxXv信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn17凸优化问题的等价形式则为最优解当且仅当,且定理:设凸优化问题x0()0Tfxx0minimize(),subjectto0nfxxxRxX信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn18凸优化问题的等价形式0minimize(),subjectto()0,1,...,niTfxxfximAxbR等价于定理:设凸优化问题000minimize(),subjectto()0,1,...,nifFzxxfFzximR其中0TAxbxFzx信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn19凸优化问题的等价形式0minimize(),subjectto,1,...,nTiifxxaxbimR等价于定理:设凸优化问题0minimize(),subjectto,1,...,0,1,...,nTiiiifxxaxsbimsimR信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn20准凸优化问题为准凸函数,为凸函数。1(),...,()mfxfx准凸优化问题的基本描述0()fx0minimize(),subjectto()0,1,...,()0,1,...,niifxxfximhxjpR注:准凸优化问题的局部最优解不一定是全局最优解。信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn21准凸优化问题的上半图形式设为准凸函数的凸函数族表示,即0()fx()tx0()()0tfxtx则准凸优化问题的可行解问题为findsubjectto()0,()0,1,...,tixxfximAxb设为准凸优化问题的最优解,若上述问题可解,则。否则。*p*pt*pt信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn22准凸优化问题二分法求解给定一个足够小的和足够大的,使得区间能包含最优解。给定ul*p,lu0LOOP:令求解可行解问题;若可解,则令,否则令若,则结束,否则gotoLOOP。()/2tluutltul信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn23线性规划(linearprogram,LP)LP问题的一般描述minimizesubjecttoTcxdGxhAxb,mnpnGARR信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn24LP问题的几种类型标准LP问题minimizesubjectto0TcxAxbx不等式形式LP问题minimizesubjecttoTcxdAxb信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn25标准LP问题的转换minimizesubjectto0,0,0TTcxcxbGxGxshAxAxbxxs信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn26LP问题的例ChebyshevcenterofapolyhedronPiecewise-linearminimizationLinear-fractionalprogramming信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn27Chebyshevcenterofapolyhedron{|}nPxRAxb多面体Chebyshevcenter:到多面体边界距离最大的内点(最深的点)2(,){|}ccBxrxuur问题描述maximizesubjectto(,)crBxrPLP形式2minimize1/subjectto,1,...,Ticiiraxrabim信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn28Piecewise-linearminimization问题描述1,...,minimize()max()Tiiimfxaxb上半图形式1,...,minimizesubjecttomax()TiiimtaxbtLP形式minimizesubjectto,1,...,Tiitaxbtim信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn29Linear-fractionalprogramming问题描述00minimize(),dom{|0}subjecttoTTTcxdfxfxexfexfGxhAxbLP形式minimizesubjectto0010TTcydzGyhzAybzeyfzz1TTxyexfzexf信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn30二次规划(quadraticprogram,QP)minimize(1/2)subjectto,,TTnmnpnxPxqxrGxhAxbPSGRARQP问题的基本描述信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn31二次约束二次规划000minimize(1/2)subjectto(1/2)0,TTTTiiinpnixPxqxrxPxqxrAxbPSARquadraticallyconstrainedquadraticprogram(QCQP)信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn32QP问题的例Least-squaresandregressionDistancebetweenpolyhedra信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn33Least-squaresandregression问题描述22minimizeAxb222TTTTAxbxAAxbAxbb信息与通信工程学院庄伯金bjzhuang@bupt.edu.cn34Distancebetweenpolyhedra问题描述12121122dist(,)inf{|,}PPxxxPxP111{|}PxAxb222{|}PxAxbQP形式21221122minimizesubjectto,xxAxbAxb信息与通信工程学院庄伯金bjzhuang@
本文标题:03凸优化理论与应用_凸优化
链接地址:https://www.777doc.com/doc-3152654 .html