您好,欢迎访问三七文档
ONTHEPOSITIVESOLUTIONSOFMATUKUMAEQUATIONYiLix1.Introduction.In1930,basedonhisphysicalintuition,T.Matukamapro-posedthefollowingequationasamathematicalmodeltodescribethedynamicsofglobularclusterofstars([M]), u+11+jxj2up=0inR3;(1.1)wherep1andu0isthegravitationalpotentialwithRR3up4 (1+jxj2)dxrepre-sentingthetotalmass.Hisaimwastoimproveamodelgivenearlierin1915byA.S.Eddington.(See[NY1,2]foramoredetailedhistoryofthesetwomodels.)SinceMatukumaequation(1.1)isrotationallyinvariant,thestructureofpositiveradialsolutionsu(r; )ofthecorrespondinginitialvalueproblem urr+2rur+11+r2up=0in[0;1);u(0)= 0;ur(0)=0;(1.2)was rststudiedbyMatukuma.Hethenconjecturedthat(i)ifp3,thenu(r; )hasa nitezeroforevery 0,(ii)ifp=3,thenu(r; )isapositiveentiresolutionwith nitetotalmassforevery 0,(iii)ifp3,thenu(r; )isapositiveentiresolutionwithin nitetotalmassforevery 0.In1938,Matukumafoundaninterestingexactsolutionu(r;p3)=p3=(1+r2)for(1.2)withp=3whichcon rmspartofhisconjecture.SincethenthereseemstobeverylittlemathematicalcontributionintheliteratureonthisequationuntiltherecentworksofW.-M.NiandS.Yotsutani[NY1,2],Y.LiandW.-M.Ni[LN2],andE.S.NoussairandC.A.Swanson[NS].First,itwasobservedin[NY2]and[LN2]thatEddington’smodeldoesnothaveanypositiveentiresolutions(whichperhapsindicatesthatMatukumaequationisindeedabetterphysicalmodel).ConcerningMatukuma’sconjecture,thefollowingresultswereestablishedby[NY2]and[LN1,2]whichshowsthatequation(1.2)isperhapsmoredelicatethanMatukumahadexpected.MathematicsSubjectClassi cation.Primary35J60.Secdary35B40..ResearchsupportedinpartbytheNationalScienceFoundation..TypesetbyAMS-TEX2TheoremA.Letu=u(r; )bethesolutionof(1.2).(i)If1p5,thenu(r; )hasa nitezeroforeverysu cientlylarge 0.(ii)If1p5,thenthereexistsan 0suchthatthesolutionu(r; )ispositivein[0;1)with nitetotalmass.(iii)If1p5,thenu(r; )isapositiveentiresolutionwithin nitetotalmassforeverysu cientlysmall 0.(iv)Ifp 5,thenu(r; )isapositiveentiresolutionwithin nitetotalmassforevery 0.Furthermore,forrnear1,(cr 1 u(r) c 1r 1ifuisin(ii),(fastdecay),c(logr) 1p 1 u(r) c 1(logr) 1p 1ifuisin(iii)or(iv),(slowdecay),(1.3)wherecissomepositiveconstant.Remark1.1.Thedividingexponentp=5istheso-calledSobolevcriticalpowern+2n 2whenn=3.TheoremAgivesanearlycompletedescriptiononthestructureofpositivera-dialsolutionsofequation(1.2).Ontheotherhand,itisaninterestingandnaturalmathematicalquestionthatwhether(1.1)possessesonlypositiveradialentireso-lutions.In[LN2,3,4]wesettlethisproblemconcerning nitetotalmasssolutions.Attemptingtoapplythemethodin[GNN2],oneimmediatelyencountersthefactthatfundamentaltool-(Lemma2.1in[GNN2,p.375]),nolongerholdswhenpiscloseto1.Ourkeynewideaistoobtainpreciseasymptoticexpansionsofsolutionsat1whichturnsouttobesu cienttogetthe\movingplaneprocessstartednear1.This\moving-planemethodwas rstdevisedbyA.D.Alexandro in1956andsincethenhasbeenusedbymanymathematicians.(See,e.g.[BN],[CGS],[CL1,2],[GNN1,2],[H],[KKL],[Li],[L2]and[S].)Theresultsin[LN2,3,4]yieldthefollowing.TheoremB.(i)Let1p5.Theneveryboundedpositiveentiresolutionofequation(1.1)with nitetotalmassisradiallysymmetricabouttheoriginandur0inr0.Furthermore,8:u(x)=Cjxjn 2+cjxjn 2+ + +cjxjn 2+(2k+1) +cjxjn 1+ + ++1jxjn 1+k +0 1jxjn near1;(1.4)3where =(p 1)(n 2),kistheintegerthatk 1(k+1) ,andC0andcaregenericconstants.(ii)Letp 5.Theneveryboundedpositiveentiresolutionof(1.1)hasin nitytotalmass.OneofthekeyingredientsintheproofofTheoremBisadetailedanalysisoftheasymptoticbehaviorof nitetotalmasssolutionsat1whichgetsthemoving-planedevicestartnear1.(See[LN2;Lemma2.3],[LN3;Theorem2.8],and[LN4;page2]),e.g.,oneoftheestimatein[LN2]impliesthateveryboundedpositiveentiresolutionu(x)of(1.1)with nitetotalmassmustbeboundedabovebyc=jxjat1forsomeconstantC0.However,theradialsymmetryofpositivesolutionswithin nitetotalmassof(1.1)isleftopenin[LN2,3,4]duetotheslowdecaypropertyofsuchsolutions(see(1.3)).Themainpurposeofthispaperistosettlethiscasefor1p5.Theorem1.Let1p5.Theneverypositiveentiresolutionuofequation(1.1)isradiallysymmetricabouttheoriginandur0inr0.Nowtounderstandthestructuresofallpositivesolutionsof(1.1)isequivalenttounderstandthestructuresofsuchsolutionsof(1.2),andforwhichwehaveTheorem2.Let1p5andu(r; )bethesolutionof(1.2).Thenthereexistsaunique 0,suchthat(i)ifu(x)isapositiveentire nitetotalmasssolutionof(1.1),thenu(x)=u(jxj; )anducanbeexpandedaccordingto(1.4)at1.(ii)ifu(x)isapositiveentiresolutionof(1.1)within nitetotalmass,thenthereexistsan 2(0; )suchthatu(x)=u(jxj; )=u(r)andu(x)=C1(logjxj)1p 1 pC1(p 1)2(n 2)log(logr)(logr)pp 1+01(logr)pp 1!(1.5)at1.4Remark1.2.Theuniquenessof inTheorem2isgivenby[Y].(Seealso[KL]and[KYY]forvariousextensionsofresultsof[Y]),whiletheexpansion(1.5)isderivedby[L1].ThecrucialingredientsoftheproofofTheorem1arethefollowings: rst,theasymptoticbehaviorofpositivesolutionsuof(1.1)isinvestigated;second,furnishedbythestudyoftheirasymptoticbehaviorthemaximumprincipleisobservedtobeapplicableat1totheoperatorL= +K(x)ifK(x) jxj 2at1tostartthemoving-planeprocessforsolutionuaslongasthe issu
本文标题:On the positive solutions of the Matukuma equation
链接地址:https://www.777doc.com/doc-3154062 .html