您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 2017年江苏省高考数学试卷及答案
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含非选择题(第1题~第20题,共20题).本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需改动,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合1,2A,2,3Baa,若AB={1}则实数a的值为________2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件4.右图是一个算法流程图,若输入x的值为116,则输出的y的值是5.若tan1-=46,则tan=6.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下面及母线均相切。记圆柱O1O2的体积为V1,球O的体积为V2,则12VV的值是7.记函数2()6fxxx的定义域为D.在区间[-4,5]上随机取一个数x,则xD的概率是8.在平面直角坐标系xoyk,双曲线2213xy的右准线与学科&网它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是9.等比数列na的各项均为实数,其前n项的和为Sn,已知36763,44SS,则8a=10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储之和最小,则x的值是11.已知函数3xx12x+e-efx=x,其中e是自然数对数的底数,若2a-1+2aff0,则实数a的取值范围是。12.如图,在同一个平面内,向量OA,OB,OC,的模分别为1,1,2,OA与OC的夹角为,且tan=7,OB与OC的夹角为45°。若OC=mOA+nOB(m,nR),则m+n=13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是.14.设f(x)是定义在R且周期为1的函数,在区间0,1上,2,,xxDfxxxD其中集合D=1,nxxnNn,则方程f(x)-lgx=0的解的个数是.15.(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。求证:(1)EF∥平面ABC;(2)AD⊥AC16.(本小题满分14分)已知向量a=(cosx,sinx),,.(1)若a∥b,求x的值;(2)记,求的最大值和最小值以及对应的x的值17.(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆2222E:1(>>0)xyabab的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为107cm,容器Ⅱ的两底面对学科*网角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(本小题满分16分)对于给定的正整数k,若数列lanl满足aaaaaaa1111......2nknknnnknknk=2kan对任意正整数n(nk)总成立,则称数列lanl是“P(k)数列”.(1)证明:等差数列lanl是“P(3)数列”;(2)若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.20.(本小题满分16分)已知函数fx=xx321(a0,bR)abx有极值,且导函数fx,的极值点是fx的零点。(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b²3a;(3)若fx,fx,这两个函数的所有极值之和不小于7-2,求a的取值范围。2017年普通高等学校招生全国统一考试(江苏卷)数学II(附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21题~第23题)。本卷满分为40分,考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需改动,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题........,并在相应的答题区域内作答............。若多做,则按作答的前两小题评分。解答时应写出文字说明、证明过程或演算步骤。A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足。求证:(1)∠PAC=∠CAB;(2)AC2=AP·AB。B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A=,B=.(1)求AB;若曲线C1;22y=182x在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy中,已知直线l的参考方程为x82tty(t为参数),曲线C的参数方程为2x2s,22sy(s为参数)。设p为曲线C上的动点,求点P到直线l的距离的最小值D.[选修4-5:不等式选讲](本小题满分10分)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd8.2x2s,22sy22.(本小题满分10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120º.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值。23.(本小题满分10)已知一个口袋有m个白球,n个黑球(m,n2N,n2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明
本文标题:2017年江苏省高考数学试卷及答案
链接地址:https://www.777doc.com/doc-3154279 .html