您好,欢迎访问三七文档
HOHAIUNIVERSITY第四章弯曲变形——梁的挠度计算HOHAIUNIVERSITY§4-7梁的变形在平面弯曲情况下,梁的轴线在形心主惯性平面内弯成一条平面曲线。此曲线称为梁的挠曲线。当材料在弹性范围时,挠曲线也称为弹性曲线。wAByxppCCθθHOHAIUNIVERSITY1、挠度:梁的截面形心在垂直于轴线方向的线位移w。2、转角:梁的截面绕中性轴转过的角度θ。w=w(x)——挠曲线方程(挠度方程)。向下为正.小变形时,θ≈tanθ=dw(x)/dx=w'(x)——转角方程。顺时针为正。wAByxppCCθθHOHAIUNIVERSITY§4-8梁的挠曲线近似微分方程zEIxMx)()(1232w1w)x(1zEIxMw1wAByxppCCθθHOHAIUNIVERSITY——挠曲线近似微分方程M0w0MMOyxM0w0MMOyxzEIxMwzEIxMwHOHAIUNIVERSITY§4-9用积分法计算梁的挠度与转角Cdx)x(MEIwEIDCxdxdxxMEIw])([对于等截面梁,EI=常数。EIw=-M(x)式中C,D由梁支座处的已知位移条件即位移边界条件确定。HOHAIUNIVERSITY边界条件:wA=0wB=0wA=0θA=0边界条件:ApApB如:Cdx)x(MEIwEIDCxdxdxxMEIw])([HOHAIUNIVERSITY例1:一悬臂梁在自由端受集中力作用,求梁的转角方程和挠度方程。并求最大转角和最大挠度。设梁的抗弯刚度为EI。FABlHOHAIUNIVERSITYAlxyFB解:)xl(F)x(M1oCFxFlxEIEIw22'积分::0x0w0w0C0D边界条件:)x(MwEI2oFxFlDCxFxFlxEIw32232HOHAIUNIVERSITYEI2FxEIFlxw2EI6FxEI2Flxw32EI2Flw2lxmaxEI3Flww3lxmax当x=l时:wmaxAlxyFθmaxBHOHAIUNIVERSITY例2:一简支梁受均布荷载作用,求梁的转角方程和挠度方程,并确定最大挠度和A、B截面的转角。设梁的抗弯刚度为EI。ABlqHOHAIUNIVERSITY解:1°建立坐标系。求支座反力。列弯矩方程:22)(2qxxqlxMCqxxqlwEI322232积分DCxqxxqlEIw43232243qlFF21ByAy2qxx2qlwEI22o梁的挠曲线微分方程为xylABqHOHAIUNIVERSITY0D,24qlC3323xEI6qxEI4qlEI24qlw433xEI24qxEI12qlxEI24qlw:0x0w:lx0w边界条件得:EI24ql30xAEI384ql5ww4xmax2lEI24ql3lxBxylABqθBθAwmaxHOHAIUNIVERSITY例3:已知F、EI,求梁的转角方程和挠度方程及wmax。xyABFlxabCD解:1°建立坐标系。求支座反力。,lFbFAylFaFBy2°分段求出弯矩方程及w′、w。,lFbx)x(M:ADxlFbwEI1HOHAIUNIVERSITY1211Cxl2FbEIwEI1131DxCxl6FbEIw)ax(FxlFb)x(M:DB22222C)ax(2Fxl2FbEIwEI)ax(FxlFbwEI22233266DxCaxFxlFbEIw)(xlFbwEI1xyABFlxabCDHOHAIUNIVERSITY边界条件:x=0,w1=0。x=l,w2=0。连续条件:x=a,w1′=w2′,w1=w2由连续条件,得:C1=C2,D1=D2再由边界条件,得:C1=C2=Fb(l2-b2)/6lD1=D2=0因此,梁各段的转角方程和挠度方程为:EIl2FbxEI6)bl(Fbw:AD222113221xEIl6FbxEIl6)bl(FbwxyABFlxabCDHOHAIUNIVERSITY222222)ax(EI2FxEIl2FbEIl6)bl(Fbw:DB33222)ax(EI6FxEIl6FbxEIl6)bl(Fbw段。应在时,当ADwbamax。,由3blx0w2201。)(EIlblFbwwxx39230221max。)(EI48b4l3Fbww22x1c2lxyABFlxabCDHOHAIUNIVERSITY。时,作用于梁中点当cmaxwwCF。,点时,右移至当l577.0x0bBF0。的位置距梁中点仅l077.0wmax。令EIFbl0642.0EI39Fblw,0b22max2。EIFbl0625.0EI16Fblw22c因此,受任意荷载的简支梁,只要挠曲线上没有拐点,均可近似地将梁中点的挠度作为最大挠度。xyABFlxabCDHOHAIUNIVERSITY常见简单梁在简单荷载作用下产生的挠度和转角可以查表。CdxxMEIwEI)(DCxdxdxxMEIw])([EIw=-M(x)C,D由梁支座处的已知位移条件即位移边界条件确定。挠曲线的微分方程:数学求解:由微分方程和弯矩来几何分析挠曲线的大致形状。总结:HOHAIUNIVERSITY思考题1:画出梁的挠曲线大致形状:思考题2:画出梁的挠曲线大致形状:ABCDMMlllABCD4q4qlllHOHAIUNIVERSITY在线弹性范围内,可用叠加法计算梁的变形:梁在多个荷载作用下产生的变形(转角或挠度)等于各个荷载单独作用所产生的变形的代数和。§4-10用叠加法计算梁的挠度与转角HOHAIUNIVERSITY例1:简支梁所受荷载如图示。用叠加法求梁中点挠度和左端截面的转角。设梁抗弯刚度为EI。ml/2qABCl/2HOHAIUNIVERSITY解:0xAwEI16mlEI384ql524EI3mlEI24ql3)m()q(AA)m(w)q(wwcccqABC)(qA)(qwcBmAC)(mA)(mwcml/2qABCl/2HOHAIUNIVERSITY例2:已知F、q、EI。求θc和wc。qABF=qaaaaCxy(a)HOHAIUNIVERSITY)()(1FwFcco、求CxqABF=qaaaay(a)wC(F)ABFC(b)θB(F)Θc(F))()(FFBCEI16)a2(F2EIqa43aFFwBC)()(EI4qa4HOHAIUNIVERSITYCqAB(c)CqABM=qa2/2CqABM=qa2/2CABM=qa2/2HOHAIUNIVERSITYCqAB(c))()(qwqcco、求2变形。刚化),不变形BCAB(1EIqlqc631)(EIqlqwc841)(不变形(刚化)。变形,BCAB2EImlqqBc32)()(EI3a2qa221EI3qa3aqqwBc)()(2EI3qa4)(qc1)(qwc1CqB(d))(qc2ABC(e)qa2/2)(qwc2HOHAIUNIVERSITYccow3、求)()()(qqFcccc21EI3qaEI6qaEI4qa333EI4qa3)()()(qwqwFwwcccc21EI3qaEI8qaEI4qa444EI24qa54——这种叠加法又称为逐段(级)刚化法。)(qc1)(qwc1CqB(d))(qc2ABC(e)qa2/2)(qwc2ABFC(b))(FC)(FCHOHAIUNIVERSITY例3:求跨中挠度wc。ABFCwcDal解:采用逐段(级)刚化法wc1ABFCDalwc2EIFlEAFa482321cccHOHAIUNIVERSITY例3:一阶梯形悬臂梁,在左端受集中力作用。试求左端的挠度。FABCaaEI2EIHOHAIUNIVERSITYABCFaaEI2EI解:FBAwA1θA1采用逐段刚化法1、令BC刚化,AB为悬臂梁。2、令AB刚化,BC为悬臂梁。FBAwBCaBM=FaHOHAIUNIVERSITYFBAwA1θA1EIFaEIFaAA323121,FBAwBCaBEIFaEIFaEIFaaEIFaBBABA125464333222BAwBCaBM=FaEIFaEIFaEIFaaEIFaBBABA43242333223EI2EI2EIHOHAIUNIVERSITYABCFaaEI2EIEIFaEIFaEIFaEIFaAAAA452422222321EIFaEIFaEIFaEIFa累加得到总的结果:HOHAIUNIVERSITY§4-11梁的刚度计算梁的刚度条件为:θmax≤[θ]wmax≤[w],其中:wmax——梁的最大挠度,θmax——一般是支座处的截面转角。[w]、[θ]——规定的容许挠度和转角。一、梁的刚度计算HOHAIUNIVERSITY吊车梁:[w]=l/500~l/600屋梁和楼板梁:[w]=l/200~l/400钢闸门主梁:[w]=l/500~l/750普通机床主轴:[w]=l/5000~l/10000[θ]=0.005rad~0.001rad梁的刚度计算包括:①校核刚度②截面设计③求容许荷载有关设计手册或规范可以查阅:HOHAIUNIVERSITY例1.一简支梁受力如图。已知F1=120KN,F2=30KN,F3=40KN,F4=12KN。梁横截面由两个槽钢组成。[σ]=170MPa,[τ]=100MPa,[w]=l/400,E=2.1×105MPa。试由强度条件和刚度条件选择槽钢型号。解:1°求支座反力KN138F0MAyB,由KN64F0MByA,2°画剪力图和弯矩图KN138FmaxQKNm4.62Mmax2.40F10.4ABF2F3F40.40.70.30.6FAyFBy(a)13818125264FQ(kN)(b)M(kNm)55.262.45438.4(c)HOHAIUNIVERSITYtzdbh/2h/2(d)3°由正应力强度条件选择槽钢型号363max36710170104.62][cmMWz查表,选两个20a号槽钢Wz=178×2=356cm3MPa175m/N1017510356104.622663max%3%100170170175∴满足正应力强度条件。4°校核切应力强度20a号槽钢:Iz=1780.4cm4,h=200mm,b=73mm,d=7mm,t=11mm。HOHAIUNIVERSITYdISFzzQ*maxmaxmax3892)11100(21131072104.1780210]7)100(1173[2101382=57.4MPa<[τ]=100MPa满足切应力强度条件要求。5°校核刚度mmEIblbFiiii94448434122.)(max∵[w]=2.4/400=6×10-3m=6mm∴选20a号槽钢也能满足刚度要求。tzdbh/2h/2(d)2.40F10.4ABF2F3F40.40.70.30.6FAyFBy(a)HOHAIUNIVERSITY二、从变形看提高承载能力从刚度看:[1]提高E,I;[2]增加约束,减小挠度。HOHAIUNIVERSITY§4-12简单超
本文标题:挠度分析
链接地址:https://www.777doc.com/doc-3158484 .html