您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 数学归纳法经典例题详解
例1.用数学归纳法证明:1212121751531311nnnn.证明:①n=1时,左边31311,右边31121,左边=右边,等式成立.②假设n=k时,等式成立,即:1212121751531311kkkk.当n=k+1时.3212112121751531311kkkk3212112kkkk321211232121322kkkkkkkk1121321kkkk这就说明,当n=k+1时,等式亦成立,综合上述,等式成立.例2.是否存在一个等差数列{an},使得对任何自然数n,等式:a1+2a2+3a3+…+nan=n(n+1)(n+2)都成立,并证明你的结论.解:将n=1,2,3分别代入等式得方程组.60322426321211aaaaaa,解得a1=6,a2=9,a3=12,则d=3.故存在一个等差数列an=3n+3,当n=1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列an=3n+3,对大于3的自然数,等式a1+2a2+3a3+…+nan=n(n+1)(n+2)都成立.因为起始值已证,可证第二步骤.假设n=k时,等式成立,即a1+2a2+3a3+…+kak=k(k+1)(k+2)那么当n=k+1时,a1+2a2+3a3+…+kak+(k+1)ak+1=k(k+1)(k+2)+(k+1)[3(k+1)+3]=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)[(k+1)+1][(k+1)+2]这就是说,当n=k+1时,也存在.综合上述,可知存在一个等差数列an=3n+3,对任何自然数n,等式a1+2a2+3a3+…+nan=n(n+1)(n+2)都成立.例3.证明不等式nn2131211(n∈N).证明:①当n=1时,左边=1,右边=2.左边右边,不等式成立.②假设n=k时,不等式成立,即kk2131211.那么当n=k+1时,11131211kk1112112kkkkk12112111kkkkkk这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意自然数n都成立.例4.。解析:(1)当时,左边,右边,命题成立。(2)假设当时命题成立,即,那么当时,左边。上式表明当时命题也成立。由(1)(2)知,命题对一切正整数均成立。例5.用数学归纳法证明:对一切大于1的自然数n,不等式成立。解析:①当时,左=,右,左右,∴不等式成立。②假设时,不等式成立,即,那么当时,,∴时,不等式也成立。由①,②知,对一切大于1的自然数n,不等式都成立。例6.若不等式对一切正整数n都成立,求正整数a的最大值,并证明你的结论。解析:取,。令,得,而,所以取,下面用数学归纳法证明,,(1)时,已证结论正确(2)假设时,则当时,有,因为,所以,所以,即时,结论也成立,由(1)(2)可知,对一切,都有,故a的最大值为25。*例7.已知数列{an}满足a1=0,a2=1,当n∈N时,an+2=an+1+an.求证:数列{an}的第4m+1项(m∈N)能被3整除.证明:①当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=a2+a1+a2+a2+a1=3,能被3整除.②当m=k时,a4k+1能被3整除,那么当n=k+1时,a4(k+1)+1=a4k+5=a4k+4+a4k+3=a4k+3+a4k+2+a4k+2+a4k+1=a4k+2+a4k+1+a4k+2+a4k+2+a4k+1=3a4k+2+2a4k+1由假设a4k+1能被3整除,又3a4k+2能被3整除,故3a4k+2+2a4k+1能被3整除.因此,当m=k+1时,a4(k+1)+1也能被3整除.由①、②可知,对一切自然数m∈N,数列{an}中的第4m+1项都能被3整除.
本文标题:数学归纳法经典例题详解
链接地址:https://www.777doc.com/doc-3173755 .html