您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 1北京切诺基越野汽车离合器设计
1第1章绪论1.1离合器的设计要求在任何条件下行驶,既能可靠的传递的发动机最大转矩,并有适当的转矩储备,有能防止传动系过载,接合时要完全,平顺,柔和,保证汽车起动时没有抖动和冲击,分离时要迅速,彻底,从动部分转动惯量要小,以减轻换挡时的变速器齿轮间的冲击,便于换挡和减少同步器的磨损。应有足够的吸热能力和良好的通风能力,以保证工作时的温度不致过高,延长其使用寿命。应能避免和衰减传动系的扭转与振动,并且具有吸收振动,缓和冲击和降低噪声的能力。操纵轻便,准确,以减轻驾驶员的疲劳。作用在从动盘的总压力和摩擦材料的摩擦因数在离合器工作过程中变化要尽可能小,以保证有稳定的工作性能。具有足够的强度与动态平衡,以保证其工作可靠,使用寿命长。结构简单,紧凑,质量小,制造工艺性好,拆装,维修,调整方便等。[1]1.2离合器的工作原理当离合器工作时,发动机飞轮是离合器的主动部件,带有摩擦片的从动盘和从动盘毂借滑动花键与变速器第一轴(离合器从动轴)相连。压紧弹簧将从动盘紧在飞轮端面上。发动机转矩即靠飞轮与从动盘接触面之间的摩擦作用而传到从动盘上,在由此经过变速器的第一轴和传动系统中一系列部件传给驱动轮。压紧弹簧的压紧力越大,则离合器所能传递的转矩也越大。由于汽车在行驶过程中需经常保持动力传递,而中断传动只是暂时的需要,所以汽车离合器的主动部分和从动部分应经常处于接合状态。摩擦副之间采用弹簧作为压紧装置即是为了适应这一要求。欲使离合器分离时,只要踩下操纵机构中的离合器踏板,套在从动盘毂环槽中的拨叉便拨动从动盘,克服压紧弹簧的压力向右移动而与飞轮分离,摩擦副之间的摩擦力消失,从而中断了动力传递。当需要重新恢复动力传递时,为使汽车速度和发动机转速的变化比较平稳,应该适当控制放松离合器踏板的速度,使从动盘在压紧弹簧的压力作用下向左移动,与飞轮恢复接触,二者接触面间的压力逐渐增加,相应的摩擦力矩也逐渐增加。当飞轮和从动盘接合还不紧密,摩擦力矩比较小时,二者可以不同步旋转,即离合器处于打滑状态。随着飞轮和从动盘接合紧密程度的逐步增大,二者的转速也渐趋相等。直到离合器完全接合而停止打滑时,汽车速度才与发动机转速成正比。[2]摩擦离合器所能传递的最大转矩取决于摩擦副间的最大静摩擦力矩,而后者又取2决于摩擦间的压紧力、摩擦因数以及摩擦面的数目和尺寸。因此,对于结构一定的离合器来说,最大静摩擦力矩是一个定值。当输入转矩达到此值时,则离压合器出现打滑现象,因而限制了传给传动系统的转矩,以防止超载。由上述工作原理可以看出,摩擦离合器主要由主动部分、从动部分、压紧机构和操纵机构四部分组成。主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,而离合器的操纵机构主要是使离合器分离的装置。在保证可靠的传递发动机最大转矩的前提下,离合器的具体结构应能满足主、从动部分分离彻底,接合柔和,从动部分的转动惯量要尽可能小,散热良好,操纵轻便,良好的动平衡等基本性能要求。1.3离合器的分类根据所用压紧弹簧布置位置的不同,可分为周布弹簧离合器、中央弹簧离合器和周布斜置弹簧离合器;根据所用压紧弹簧形式的不同,可分为圆柱螺旋弹簧离合器、圆锥螺旋弹簧离合器和膜片弹簧离合器。[3]膜片弹簧是一种由弹簧钢制成的具有碟形结构的碟形弹簧,主要有碟形弹簧部分和分离指部分组成。膜片弹簧两侧有钢丝支撑圈,借6个膜片弹簧固定钉将起安装在离合器盖上。再离合器盖没有固定到飞轮上时,膜片弹簧不受力,处于自由状态。此时离合器盖与飞轮安装面之间有一距离。当将离合器盖用连接螺钉固定到飞轮上时,由于离合器盖靠近飞轮,后钢丝支撑圈则压向膜片弹簧使之发生弹性变形,膜片弹簧的圆锥角变小,几乎接近于压平状态。同时,在膜片弹簧的大端对压盘产生压紧力,使离合器处于接合状态。当分离离合器时,分离轴承作移,膜片弹簧被压在前钢丝支撑圈上,其径向截面以支撑圈为支点右移,膜片弹簧变成反锥形状,使膜片弹簧大端右移,并通过分离弹簧钩拉动压盘使离合器分离。1.4膜片弹簧离合器的优点1、膜片弹簧具有较理想的非线性弹簧特性,弹簧压力在摩擦片的磨损范围基本保持不变,因而离合器在工作中能保持传递的转矩大致不变,相对圆柱螺旋弹簧,其压力大大下降,离合器分离时,弹簧压力有所下降,从而降低的踏板力。对于圆柱螺旋弹簧,其压力大大增加;2、磨片弹簧兼压紧弹簧与分离杠杆的作用,结构简单,紧凑,轴向尺寸小,零件数目少,质量小;3、高速旋转时,弹簧压紧力降低很小,性能稳定;而圆柱螺旋弹簧压紧力则降低3明显;4、磨片弹簧以整个圆周与压盘相接触,使压力分布均匀,摩擦片接触良好磨损均匀;5、易于实现良好的通风散热,使用寿命长;6、磨片弹簧中心与离合器中心线重合,平衡性。[2]1.5设计内容由于膜片弹簧离合器,具有零件数目少,重量轻,非线性特性好,操纵轻便等优点,且制造膜片弹簧的工艺水平在不断提高,所以本文将设计推式膜片弹簧离合器。本设计以北京切诺基汽车各项参数和性能为设计基础,所选定汽车发动机提供的最大转矩Temax为200Nm。4第2章离合器基本参数的选择2.1离合器基本性能关系式离合器的基本功能之一是传递力矩,因此离合器转矩容量是离合器最为基本的性能之一。通常它只能用来初步定出离合器的原始参数、尺寸,它们是否合适最终取决于试验验证。根据摩擦力矩公式12/133oemaxccDPZfTT(2.1)式中:Tc—离合器静摩擦力矩;β—后备系数;f—摩擦因数;Z:摩擦面数;po—单位压力;D—摩擦片外径;c—内外径之比。有了上面的关系式,对于一定的离合器结构而言,只要合理选择其中的参数,并能满足上面的关系式,就可估算出所设计的离合器是否合适[4]。2.2离合器后备系数的选择后备系数β是离合器一个重要设计参数,它反映了离合器传递发动机最大转矩的可靠程度。显然,为可靠传递发动机最大转矩和防止离合器滑磨时间过长,不宜选的太小;为是离合器尺寸不致过大,减少传动系过载,保证操纵轻便,不宜选的太大;当发动机后备功率较大、使用条件较好时,可选的小一些;当使用条件恶劣、需要拖带挂车时,为提高起步能力,减少离合器滑磨,可选的大一些;汽车总质量大,也应选得越大。在选择β时,应保证离合器应能可靠地传递发动机最大转矩、要防止离合器滑磨过大、要能防止传动系过载。其数值按表2.1选取,而设计本车的离合器其β要求比较的大,初步选择为1.60。表2.1离合器后备系数β的取值范围车型后备系数乘用车及最大总质量小于6t的商用车1.20~1.75最大总质量为6~14t的商用车1.50~2.25挂车1.80~4.0052.3摩擦材料中单位压力和摩擦因数的选择石棉基摩擦材料的密度小,制造容易、价格低廉等优点,但受工作温度、单位压力、滑磨速度影响大,主要用于中、轻载荷的工作条件下,而粉末冶金材料的传热性好、热稳定性与耐磨性好、摩擦因数高,故在选择摩擦片材料是粉末冶金材料中的铁基[5]。初选po根据表2.2中可得:为0.5MPa,f为0.5。表2.2摩擦材料中单位压力和摩擦因数的取值摩擦片材料单位压力po/MPa摩擦因数f石棉基材料模压0.15~0.250.20~0.25编织0.25~0.350.25~0.30粉末冶金材料铜基0.35~0.500.25~0.30铁基0.35~0.50金属陶瓷材料0.70~1.500.42.4本章小结在离合器的基本性能关系式中我们得知要用到后备系数;摩擦因数;单位压力等一些参数。通过查阅资料,工具用书,图表等我能、我们可以对一些参数取值。为我们接下来的设计计算提供一定帮助。6第3章离合器从动盘总成设计3.1摩擦片的设计摩擦片设计要求:①摩擦因数较高且较稳固,工作温度,单位压力,滑磨速度的变化对其影响要小;②具有足够的机械强度与耐磨性;③密度要小,以减少从动盘的转动惯量;④热稳定性好,在高温下分离出粘合剂力,无味,不易烧焦;⑤磨合性能好,不致刮伤飞轮和压盘表面;⑥接合时应平顺,而不产生“咬合”或“抖动”现象;⑦长期停放后,摩擦面间不发生“粘着”现象。离合器摩擦片所用的材料主要有石棉基摩擦材料、粉末冶金摩擦材料和金属陶瓷摩擦材料。石棉基摩擦材料具有摩擦因数较高、密度较小、制造容易、价格低廉等优点。但它性能不够稳定、摩擦因数受工作温度、单位压力、滑磨速度的影响大,故目前主要应用于中、轻载荷下工作。由于石棉在生产和使用过程中对环境有影响,对人体有害,故以玻璃纤维、金属纤维来代替石棉纤维。粉末冶金和金属陶瓷摩擦材料具有传热性好、热稳定性与耐磨性好、摩擦因数较高且稳定、能承受的单位压力较高以及寿命较长等优点,但价格较贵,密度较大,接合平顺性较差,主要应用于载荷质量较大的商用车上。摩擦片与从动片的连接方式有铆接和粘接两种。铆接方式连接可靠,更换摩擦片方便,适宜在从动片上安装波形片,但其摩擦面积利用率小,使用寿命短。粘接方式可增大实际摩擦面积,摩擦片厚度利用率高,具有较高的抗离心力和切向力的能力;但更换摩擦片困难,且使从动盘难以安装波形片,无轴向弹性,可靠性低。摩擦片材料:粉末冶金材料(其具有传热性好,热稳定性与耐磨性好、摩擦因数较高而且稳定、能承受的单位压力较高及寿命较长等优点)。摩擦片与从动片的连接方式:铆接(因具连接可靠、更换摩擦片方便、适宜在从动盘上安装波形片而采用)。摩擦片基本尺寸的确定。摩擦片外径是离合器的基本尺寸,它关系到离合器的结构重量和使用寿命,它和离合器所需传递的转矩有一定的关系。根据公式3.1:7330emax)1(12cfZpTD(3.1)式中:Temax—发动机最大转矩;β—后备系数;f—摩擦因数;Z:摩擦面数;po—单位压力;D—摩擦片外径;c—内外径之比得到D=240mm。计算离合器的外径D同时参考经验公式3.2:ATADemax100(3.2)式中:A—参考系数;D—摩擦片外径;Temax—发动机最大转矩;A取47,计算得到D=234mm。初选D以后,还需根据摩擦片尺寸的系列化和标准化进一步确定[6]。查找标准(GB1457—74)的规定:最终确定:外径D=250mm;内径d=155mm,内外径之比c=0.620,单片面积F=30200mm2。对摩擦片的厚度h,我国以规定了3种规格:3.2mm,3.5mm,4mm,这里选择厚度为3.5mm。(2)摩擦片的校核。在初步确定完摩擦片的基本尺寸后,要对摩擦片校核:1)摩擦片外D(mm)的选择应使最大圆周速度vD不超过65~70m/s:3emaxD1060/nv(3.3)式中:nemax—发动机的最高转速(r/min);当nemax取6000时,代入可得:vD=70≤65~70m/s。2)摩擦片的内外径比c应在0.53~0.70范围内:表3.1离合器尺寸选择参数表摩擦片外径D/mm发动机最大转矩Temax/Nm单片离合器重负荷中等负荷极限值225130150170250170200230……………………8c=0.620∈{0.53~0.70}。3)保证离合器可靠地传递发动机的转矩,并防止传动系过载,β应在1.2~1.75之间,代入式2—1:β=Tc/Temax=1.60∈{1.20~1.75}。4)为了减少汽车起步过程中的离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,离合器每一次接合的单位面积滑磨功应小于其许用值,即:)-(422dDZW(3.4)式中:ω—单位摩擦面积滑磨功(J/mm2);[ω]—其许用值0.4J/mm2;W—汽车起步时离合器接合一次产生的总滑磨功(J),可以根据下式计算:2g202ra2e28001iirnnW(3.5)式中:ne—发动机转速,取2000r/min;ma—汽车总质量(kg),取1200kg;rr—汽车轮胎滚动半径(m);ig—汽车起步时所用变速器档位的传动比;数值取3.8;i0—主减速器传动比,取4.2。各个数值代入3—5式得到:W=14983J。把W=14983J和摩擦片的各个数值代入式3.4,得:=0.338J/mm2≤[]=0.4J/mm2。经过校核可知,摩擦片的设计符合
本文标题:1北京切诺基越野汽车离合器设计
链接地址:https://www.777doc.com/doc-3178762 .html