您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学人教版必修1函数及其表示教学设计
第二章基本初等函数、导数及其应用2016高考导航第二章基本初等函数、导数及其应用知识点考纲下载函数及其表示1.了解构成函数的要素;会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.单调性1.理解函数的单调性及其几何意义.2.理解函数最大值、最小值及其几何意义.奇偶性结合具体函数,了解函数奇偶性的含义.第二章基本初等函数、导数及其应用知识点考纲下载指数与指数函数1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,理解指数函数的单调性与指数函数图象所过的特殊点.4.知道指数函数是一类重要的函数模型.对数与对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的运用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象所过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=ax与对数函数y=logax互为反函数(a>0,且a≠1).第二章基本初等函数、导数及其应用知识点考纲下载幂函数函数的图象会运用函数图象理解和研究函数的性质.函数与方程1.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.1.了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情况.第二章基本初等函数、导数及其应用知识点考纲下载函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.变化率与导数、导数的运算1.了解导数概念的实际背景,理解导数的几何意义.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.2.能根据导数定义求函数y=C,y=x,y=x2,y=x3,y=1x,y=x的导数.第二章基本初等函数、导数及其应用知识点考纲下载导数的应用1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次).3.会利用导数解决某些实际问题.定积分与微积分基本定理1.了解定积分产生的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.第1讲函数及其表示第二章基本初等函数、导数及其应用教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用1.函数与映射的概念函数映射两集合A、B设A,B是两个非空的_______设A,B是两个非空的__________对应关系f:A→B如果按照某种确定的对应关系f,使对于集合A中的_______一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的______一个元素x,在集合B中都有唯一确定的元素y与之对应数集集合任意任意教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用函数映射名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:__________、__________和__________.定义域值域对应关系(3)相等函数:如果两个函数的__________和__________完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:__________、图象法、列表法.定义域对应关系解析法教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[做一做]1.(2014·高考江西卷)函数f(x)=ln(x2-x)的定义域为()A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)C教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用2.设函数f(x)=x,x≥0,-x,x<0,若f(a)+f(-1)=2,则a=()A.-3B.±3C.-1D.±1D解析:若a≥0,则a+1=2,得a=1;若a<0,则-a+1=2,得a=-1.教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用1.辨明两个易误点(1)易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.(2)分段函数是一个函数,而不是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用2.函数解析式的四种常用求法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f(x)与f(1x)或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用[做一做]3.(2015·长春模拟)下列对应关系:①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根;②A=R,B=R,f:x→x的倒数;③A=R,B=R,f:x→x2-2;④A={-1,0,1},B={-1,0,1},f:A中的数平方.其中是A到B的映射的是()A.①③B.②④C.③④D.②③C教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用4.已知f1x=x2+5x,则f(x)=______________.1x2+5x(x≠0)5.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(x)=_________________.x2-4x+3教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用考点一函数的基本概念考点二分段函数(高频考点)考点三求函数的解析式教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用考点一函数的基本概念以下给出的同组函数中,是否表示同一函数?为什么?(1)f1:y=xx;f2:y=1.(2)f1:y=1,x≤1,2,1x2,3,x≥2;f2:xx≤11x2x≥2y123教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用(3)f1:y=2x;f2:如图所示.[解](1)不同函数.f1(x)的定义域为{x∈R|x≠0},f2(x)的定义域为R.(2)同一函数,x与y的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(3)同一函数.理由同(2).教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用[规律方法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用1.有以下判断:①f(x)=|x|x与g(x)=1,(x≥0)-1,(x<0)表示同一函数;②函数y=f(x)的图象与直线x=1的交点最多有1个;③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;④若f(x)=|x-1|-|x|,则ff12=0.其中正确判断的序号是________.②③教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用解析:对于①,由于函数f(x)=|x|x的定义域为{x|x∈R且x≠0},而函数g(x)=1,(x≥0)-1,(x<0)的定义域是R,所以二者不是同一函数;对于②,若x=1不是y=f(x)定义域内的值,则直线x=1与y=f(x)的图象没有交点,若x=1是y=f(x)定义域内的值,由函数的定义可知,直线x=1与y=f(x)的图象只有一个交点,即y=f(x)的图象与直线x=1最多有一个交点;教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用对于③,f(x)与g(t)的定义域、值域和对应关系均相同,所以f(x)与g(t)表示同一函数;对于④,由于f12=12-1-12=0,∴ff12=f(0)=1.综上可知,正确的判断是②,③.教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用考点二分段函数(高频考点)分段函数作为考查函数知识的最佳载体,以其考查知识容量大而成为高考命题的亮点,常以选择题、填空题的形式出现,试题难度不大,多为容易题或中档题.高考对分段函数的考查主要有以下四个命题角度:(1)由分段函数解析式,求函数值(或最值);(2)由分段函数解析式与方程,求参数的值;(3)由分段函数解析式,求解不等式;(4)由分段函数解析式,判断函数的奇偶性.(本章第4讲再讲解)教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用(1)(2014·高考江西卷)已知函数f(x)=a·2x,x≥0,2-x,x<0(a∈R),若f[f(-1)]=1,则a=()A.14B..12C.1D.2(2)(2013·高考福建卷)已知函数f(x)=2x3,x0,-tanx,0≤xπ2,则ffπ4=________.A-2教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二章基本初等函数、导数及其应用(3)(2015·榆林模拟)已知f(x)=12x+1,x≤0,-(x-1)2,x0,使f(x)≥-1成立的x的取值范围是__________________.[解析](1)由题意得f(-1)=2-(-1)=2,f[f(-1)]=f(2)=a·22=4a=1,∴a=14.(2)∵π4∈0,π2,∴fπ4=-tanπ4=-1,∴ffπ4=f(-1)=2×(-1)3=-2.[-4,2]教材回顾夯实基础典例剖析考点突破名师讲坛素养提升知能训练轻松闯关第二
本文标题:高中数学人教版必修1函数及其表示教学设计
链接地址:https://www.777doc.com/doc-3191614 .html