您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数图像和性质复习课件
一位篮球运动员跳起投篮,篮球运行的路线是一条什么线?二次函数的图象与性质注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.二次函数的定义:形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数自变量x的取值范围是:任意实数二次函数的表达式:(1)二次函数的一般形式:函数y=ax2+bx+c(a≠0)注意:它的特殊形式:当b=0,c=0时:y=ax2当b=0时:y=ax2+c当c=0时:y=ax2+bx(2)顶点式:y=a(x-h)2+k(a≠0)(3)交点式:y=a(x-x1)(x-x2)(a≠0)y=ax2(a≠0)a0a0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由|a|来确定的,一般说来,|a|越大,抛物线的开口就越小.二次函数y=ax2的性质12345x12345678910yo-1-2-3-4-5函数y=x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?12共同点:不同点:开口都向上;顶点是原点而且是抛物线的最低点,对称轴是y轴开口大小不同;2yx212yx22yx|a|越大,在对称轴的左侧,y随着x的增大而减小。在对称轴的右侧,y随着x的增大而增大。抛物线的开口越小。x1y-1-2-30123-1-2-3-4-5函数y=-x2,y=-2x2的图象与函数y=-x2(图中蓝线图形)的图象相比,有什么共同点和不同点?12共同点:开口都向下;不同点:顶点是原点而且是抛物线的最高点,对称轴是y轴开口大小不同;|a|越大,221xy2xy22xy在对称轴的左侧,y随着x的增大而增大。在对称轴的右侧,y随着x的增大而减小。抛物线的开口越小.二次函数的图象图象:是一条抛物线。图象的特点:1、有开口方向,开口大小。2、有对称轴。3、有顶点(最低点或最高点)。oxyoxy二次函数y=ax2的图象与二次函数y=ax2+k的图象的关系•二次函数y=ax2+k的图象可由二次函数y=ax2的图象向上(或向下)平移得到:•当k>0时,抛物线y=ax2向上平移k的绝对值个单位,得y=ax2+k•当k<0时,抛物线y=ax2向下平移k的绝对值个单位,得y=ax2+ky=2x2y=2x2-2y=2x2+2二次函数y=ax2的图象与二次函数y=a(x-h)2的图象的关系•二次函数y=a(x-h)2的图象可由二次函数y=ax2的图象向左(或向右)平移得到:•当h>0时,抛物线y=ax2向右平移h的绝对值个单位,得y=a(x-h)2•当h<0时,抛物线y=ax2向左平移h的绝对值个单位,得y=a(x-h)2二次函数y=ax2的图象与二次函数y=a(x-h)2+k的图象的关系•二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移h的绝对值个单位,在向上(或向下)平移k的绝对值个单位而得到.(3)开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。二次函数2yaxbxc的性质:(1)顶点坐标24,;24bacbaa(2)对称轴是直线2bxa2bxa24-,4acbya最小=2bxa24-;4acbya最大=如果a>0,当时,函数有最小值,如果a<0,当时,函数有最大值,(4)最值:2bxa2bxa2bxa2bxa①若a>0,当时,y随x的增大而增大;当时,y随x的增大而减小。②若a<0,当时,y随x的增大而减小;当时,y随x的增大而增大。(5)增减性:xy与y轴的交点坐标为(0,c)(6)抛物线2yaxbxc与坐标轴的交点①抛物线2yaxbxc2yaxbxc12,0,,0xx12,xx20axbxc②抛物线与x轴的交点坐标为,其中为方程的两实数根与x轴的交点情况可由对应的一元二次方程2yaxbxc20axbxc(7)抛物线的根的判别式判定:①△>0有两个交点②△=0有一个交点③△<0没有交点例1已知抛物线247,yxkxk①k取何值时,抛物线经过原点;②k取何值时,抛物线顶点在y轴上;③k取何值时,抛物线顶点在x轴上;④k取何值时,抛物线顶点在坐标轴上。,所以k=-4,所以当k=-4时,抛物线顶点在y轴上。,所以k=-7,所以当k=-7时,抛物线经过原点;②抛物线顶点在y轴上,则顶点横坐标为0,即解:①抛物线经过原点,则当x=0时,y=0,所以200407kk40221kba,所以当k=2或k=-6时,抛物线顶点在x轴上。③抛物线顶点在x轴上,则顶点纵坐标为0,即③抛物线顶点在x轴上,则顶点纵坐标为0,即22417440441kkacba24120kk122,6kk,整理得,解得:④由②、③知,当k=-4或k=2或k=-6时,抛物线的顶点在坐标轴上。22417440441kkacba例2当x取何值时,二次函数有最大值或最小值,最大值或最小值是多少?2281yxx因为所以当x=2时,。因为a=2>0,抛物线有最低点,所以y有最小值,2281yxx224218842,7222442bacbaa-7y最小值=-总结:求二次函数最值,有两个方法.(1)用配方法;(2)用公式法.解(公式法):例3已知函数,当x为何值时,函数值y随自变量的值的增大而减小。211322yxx102a331222ba解:,∴抛物线开口向下,∴对称轴是直线x=-3,当x>-3时,y随x的增大而减小。例4已知如图是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.分析:已知的是几何关系(图形的位置、形状),需要求出的是数量关系,所以应发挥数形结合的作用.解:(1)因为抛物线开口向下,所以a<0;判断a的符号(2)因为对称轴在y轴右侧,所以02ba,而a<0,故b>0;判断b的符号(3)因为x=0时,y=c,即图象与y轴交点的坐标是(0,c),而图中这一点在y轴正半轴,即c>0;判断c的符号2404acba240acb240bac(4)因为顶点在第一象限,其纵坐标,且a<0,所以,故。判断b2-4ac的符号,且a<0,所以-b>2a,故2a+b<0;(5)因为顶点横坐标小于1,即12ba判断2a+b的符号(6)因为图象上的点的横坐标为1时,点的纵坐标为正值,即a·12+b·1+c>0,故a+b+c>0;判断a+b+c的符号(7)因为图象上的点的横坐标为-1时,点的纵坐标为负值,即a(-1)2+b(-1)+c<0,故a-b+c<0.判断a-b+c的符号通过本节课的学习你有哪些收获?
本文标题:二次函数图像和性质复习课件
链接地址:https://www.777doc.com/doc-3226003 .html