您好,欢迎访问三七文档
组合与组合数通过前面的学习,我们已经知道了组合的定义,组合数及其一些性质和组合与排列的关系。今天我们将在此基础上,继续学习它们的一些应用(一)组合数的公式及其性质:(1)(2)(1)!mmnnnmAnnnnmCAm!!()!mnnCmnm组合数性质1:mnmnnCC11mmmnnnCCC2:01nnnCC特别地:______,4A3A2918nnn则已知7__________3337410ACC0________,231010xCCxx则1,或5_______9910098999799CCC5050练习一129999CCC(5)求的值(1)(2)(3)(4)5111231112!3!4!!!nnn求证:例题解读!(1)!(1)(1)!nnnn证明:11(1)(1)!!!nnnn因为左边=111111112!2!3!3!4!(1)!!nn注意阶乘的变形形式:11!n=左边,评注:(1)!(1)!nnn所以等式成立练习精选:证明下列等式:1)!1(!!33!22!1nnn(1)11122110mmnmmnnnnCCCCC(2)例1.6本不同的书,按下列要求各有多少种不同的选法:(2)分为三份,每份2本;解析:(2)分给甲、乙、丙三人,每人两本有种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有种方法.根据分步计数原理所以.222642CCC33A可得:22236423CCCxA2226423315CCCxA例題解读:因此,分为三份,每份两本一共有15种方法所以.点评:本题是分组中的“均匀分组”问题.一般地:将mn个元素均匀分成n组(每组m个元素),共有mmmmnmnmmnnCCCA种方法例1.6本不同的书,按下列要求各有多少种不同的选法:(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;解:(3)这是“不均匀分组”问题,一共有种方法.12365360CCC(4)在(3)的基础上再进行全排列,所以一共有种方法.12336533360CCCA例题解读:例1.6本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本解:(5)可以分为三类情况:①“2、2、2型”的分配情况,有种方法;22264290CCC②“1、2、3型”的分配情况,有种方法;12336533360CCCA③“1、1、4型”,有种方法,436390CA所以,一共有90+360+90=540种方法.例题解读:元素相同问题隔板策略例.有10个运动员名额,再分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有___________种分法。一班二班三班四班五班六班七班69C将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为11mnC例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法?(2)10个优秀指标分配到1、2、3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?分析:(1)这是同种元素的“不平均分组”问题.本小题可构造数学模型,用5个隔板插入10个指标中的9个空隙,既有种方法。按照第一个隔板前的指标数为1班的指标,第一个隔板与第二个隔板之间的指标数为2班的指标,以此类推,因此共有种分法.59C59126C例题解读:(2)先拿3个指标分给二班1个,三班2个,然后,问题转化为7个优秀指标分给三个班,每班至少一个.由(1)可知共有种分法注:第一小题也可以先给每个班一个指标,然后,将剩余的4个指标按分给一个班、两个班、三个班、四个班进行分类,共有种分法.2615C1234666623126CCCC例题解读:例3.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有种方法;44256(2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有种方法;第二步:从四个不同的盒中任取三个将球放入有种方法,所以,一共有=144种方法24C34A24C34A例题解读例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为种方法3620C例题解读:例5.(辽宁卷9)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48D.72种B例题解读:例6.(海南卷9)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有()A.20种B.30种C.40种D.60种A例7.(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).2161.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是.2.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有种邀请方法.3.一个集合有5个元素,则该集合的非空真子集共有个.4.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成个平行四边形.5.空间有三组平行平面,第一组有m个,第二组有n个,第三组有t个,不同两组的平面都相交,且交线不都平行,可构成个平行六面体455C9830222mntCCC22mnCC课堂练习:6.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法7.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组3人,有_______种不同分法.3122440C3645280课堂练习:8.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况:①若取出6,则有种方法;②若不取6,则有种方法,211182772()ACCC1277CA根据分类计数原理,一共有+=602种方法211182772()ACCC1277CA课堂练习:9.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜_____种.(结果用数值表示)7【解题回顾】由于化为一元二次不等式n2-n-40≥0求解较繁,考虑到n为正整数,故解有关排列、组合的不等式时,常用估算法.10.某电视台邀请了6位同学的父母共12人,请这12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,那么不同选择方法的种数是()(A)60(B)120(C)240(D)270C11.某次数学测验中,学号是i(i=1、2、3、4)的四位同学的考试成绩f(i)∈{86,87,88,89,90},且满足f(1)<f(2)≤f(3)<f(4),则四位同学的成绩可能情况有()(A)5种(B)12种(C)15种(D)10种CB12.表达式可以作为下列哪一问题的答案()(A)n个不同的球放入不同编号的n个盒子中,只有一个盒子放两个球的方法数(B)n个不同的球放入不同编号的n个盒子中,只有一个盒子空着的方法数(C)n个不同的球放入不同编号的n个盒子中,只有两个盒子放两个球的方法数(D)n个不同的球放入不同编号的n个盒子中,只有两个盒子空着的方法数211nnnnCA1.按元素的性质进行分类、按事件发生的连续过程分步,是处理组合应用题的基本思想方法;2.对于有限制条件的问题,要优先安排特殊元素、特殊位置;3.对于含“至多”、“至少”的问题,宜用排除法或分类解决;4.按指定的一种顺序排列的问题,实质是组合问题.课堂小结5.需要注意的是,均匀分组(不计组的顺序)问题不是简单的组合问题,如:将3个人分成3组,每组一个人,显然只有1种分法,而不是种,一般地,将m、n个不同元素均匀分成n组,有1113216CCC(-1)mmmmnnmmmmCCCA种分法
本文标题:组合3
链接地址:https://www.777doc.com/doc-3227721 .html