您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 5-3微积分基本公式
变速直线运动中位置函数与速度函数的联系变速直线运动中路程为21)(TTdttv设某物体作直线运动,已知速度)(tvv是时间间隔],[21TT上t的一个连续函数,且0)(tv,求物体在这段时间内所经过的路程.另一方面这段路程可表示为)()(12TsTs一、问题的提出).()()(1221TsTsdttvTT).()(tvts其中设函数)(xf在区间],[ba上连续,并且设x为],[ba上的一点,xadxxf)(考察定积分xadttf)(记.)()(xadttfx积分上限函数如果上限x在区间],[ba上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在],[ba上定义了一个函数,二、积分上限函数及其导数abxyo定理1如果)(xf在],[ba上连续,则积分上限的函数dttfxxa)()(在],[ba上具有导数,且它的导数是)()()(xfdttfdxdxxa)(bxa积分上限函数的性质xx证dttfxxxxa)()()()(xxxdttfdttfxaxxa)()()(xxdttfdttfdttfxaxxxxa)()()(,)(xxxdttf由积分中值定理得xf)(],,[xxxxx,0),(fx)(limlim00fxxx).()(xfxabxyoxx)(xx如果)(tf连续,)(xa、)(xb可导,则dttfxFxbxa)()()()(的导数)(xF为补充)()()()(xaxafxbxbf证dttfxFxaxb)()(0)()(0dttfxb)(0)(,)()(0dttfxa)()()()()(xaxafxbxbfxF)()()()(xbxadttfdxdxF例1求.lim21cos02xdtextx解1cos2xtdtedxd,cos12xtdtedxd)(cos2cosxex,sin2cosxex21cos02limxdtextxxexxx2sinlim2cos0.21e00分析:这是型不定式,应用洛必达法则.例2设)(xf在),(内连续,且0)(xf.证明函数xxdttfdtttfxF00)()()(在),0(内为单调增加函数.证xdtttfdxd0)(),(xxfxdttfdxd0)(),(xf2000)()()()()()(xxxdttfdtttfxfdttfxxfxF,)()()()()(200xxdttfdttftxxfxF)0(,0)(xxf,0)(0xdttf,0)()(tftx,0)()(0xdttftx).0(0)(xxF故)(xF在),0(内为单调增加函数.例3设)(xf在]1,0[上连续,且1)(xf.证明1)(20dttfxx在]1,0[上只有一个解.证,1)(2)(0dttfxxFx,0)(2)(xfxF,1)(xf)(xF在]1,0[上为单调增加函数.,01)0(F10)(1)1(dttfF10)](1[dttf,0所以0)(xF即原方程在]1,0[上只有一个解.令定理2(原函数存在定理)如果)(xf在],[ba上连续,则积分上限的函数dttfxxa)()(就是)(xf在],[ba上的一个原函数.定理的重要意义:(1)肯定了连续函数的原函数是存在的.(2)初步揭示了积分学中的定积分与原函数之间的联系.定理3(微积分基本公式)如果)(xF是连续函数)(xf在区间],[ba上的一个原函数,则)()()(aFbFdxxfba.又dttfxxa)()(也是)(xf的一个原函数,已知)(xF是)(xf的一个原函数,CxxF)()(],[bax证三、牛顿—莱布尼茨公式令ax,)()(CaaF0)()(dttfaaa,)(CaF),()()(aFxFdttfxa,)()(CdttfxFxa令bx).()()(aFbFdxxfba牛顿—莱布尼茨公式)()()(aFbFdxxfba微积分基本公式表明:baxF)(一个连续函数在区间],[ba上的定积分等于它的任意一个原函数在区间],[ba上的增量.注意当ba时,)()()(aFbFdxxfba仍成立.求定积分问题转化为求原函数的问题.例4求.)1sincos2(20dxxx原式20cossin2xxx.23例5设,求.215102)(xxxxf20)(dxxf解解102120)()()(dxxfdxxfdxxf在]2,1[上规定当1x时,5)(xf,102152dxxdx原式.6xyo12例6求.},max{222dxxx解由图形可知},max{)(2xxxf,21100222xxxxxx21210022dxxxdxdxx原式.211xyo2xyxy122例7求解.112dxx当0x时,x1的一个原函数是||lnx,dxx12112||lnx.2ln2ln1ln例8计算曲线xysin在],0[上与x轴所围成的平面图形的面积.解面积xyo0sinxdxA0cosx.23.微积分基本公式1.积分上限函数xadttfx)()(2.积分上限函数的导数)()(xfx)()()(aFbFdxxfba四、小结牛顿-莱布尼茨公式沟通了微分学与积分学之间的关系.思考题设)(xf在],[ba上连续,则dttfxa)(与duufbx)(是x的函数还是t与u的函数?它们的导数存在吗?如存在等于什么?思考题解答dttfxa)(与duufbx)(都是x的函数)()(xfdttfdxdxa)()(xfduufdxdbx一、填空题:1、baxdxedxd22=_______.2、xadxxfdxd))((__________.3、223)1ln(xdtttdxd_______.4、20)(dxxf____,其中21,210,)(2xxxxxf.5、设,coscos1nxdxmxIdxnxmxsinsin,练习题(1)、当nm时,1I=__,2I=_____,(2)、当nm时,1I=___,2I=_____.6、设,sincosnxdxmx(1)、当nm时,3I=____,(2)、当nm时,3I=_____.7、94)1(dxxx_____.8、33121xdx_____.9、xdttxx020coslim________.二、求导数:1、设函数)(xyy由方程0cos00xyttdtdte所确定,求dxdy;2、设12122,ln,lnttuduuyuduux)1(t,求22dxyd;3、xxdttdxdcossin2)cos(;4、设2031)(xxdxxg,求)1(g.三、计算下列各定积分:1、2122)1(dxxx;2、212121xdx;3、012241133dxxxx;4、20sindxx.四、求下列极限:1、xtxtxdtedte022022)(lim;2、2502021)cos1(limxdttxx.五、设)(xf为连续函数,证明:xxtdtduufdttxtf000))(())((.六、求函数xdttttxf02113)(在区间1,0上的最大值与最小值.七、设时,或,当时,当xxxxxf000,sin21)(求xdttfx0)()(在),(内的表达式.八、设baxf,)(在上连续且,0)(xfxaxbtfdtdttfxF)()()(,证明:(1)、2)('xF;(2)、方程0)(xF在),(ba内有且仅有一个根.一、1、0;2、)()(afxf;3、)1ln(23xx;4、65;5、(1),;(2)0,0;7、;61458、6;9、1.二、1、1sincosxx;2、ttln212;3、)sincos()cos(sin2xxx;4、2.三、1、852;2、3;3、14;4、4.练习题答案四、1、0;2、101.六、335,0.七、xxxxx,10,)cos1(210,0)(.
本文标题:5-3微积分基本公式
链接地址:https://www.777doc.com/doc-3228932 .html