您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2016年山东日照市中考试题数学试卷
1一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣21|小的数是()A.1B.2C.21D.-21【答案】D.【解析】考点:有理数大小比较;绝对值.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()【答案】B.【解析】试题分析:俯视图是从上面看到的图形,由题意得:俯视图与选项B中图形一致.故选B.考点:简单组合体的三视图.3.下列各式的运算正确的是()A.aa3=aB.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【答案】D.【解析】试题分析:选项A,把分子分母同时约去公因式a可得aa3=a2,选项A错误;选项B,a2和a不是同类项,不能合并,选项B错误;选项C,根据积的乘方法则可得(﹣2a)2=4a4,2选项C错误;选项D,根据幂的乘方法则可得(a3)2=a6,选项D正确.故选D.考点:幂的乘方与积的乘方;合并同类项;约分.4.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【答案】B.【解析】试题分析:已知∠1=48°,根据余角的定义可得∠3∠3=90°﹣∠1=90°﹣48°=42°.再由平行线的性质即可得∠2=∠3=42°.故选B.考点:平行线的性质.5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣7【答案】C.【解析】考点:科学记数法.6.正比例函数y1=k1x(k1>0)与反比例函数y2=xk2(k2>0)图象如图所示,则不等式k1x>xk2的解集在数轴上表示正确的是()3【答案】B.【解析】考点:在数轴上表示不等式的解集;反比例函数与一次函数的交点问题.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:吨)0.511.52家庭数(户)2341请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨【答案】A.【解析】试题分析:根据表格中10户家庭一个月的节水情况可得平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2吨,所以200户家庭这个月节约用水的总量是200×1.2=240吨,故选A.考点:用样本估计总体.8.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21%B.8%C.10%D.12.1%【答案】C.4【解析】试题分析:设该县这两年GDP总量的平均增长率为x,根据:2015年某县GDP总量×(1+增长百分率)2=2017年全县GDP总量,可得方程1000(1+x)2=1210,解得x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选C.考点:一元二次方程的应用.9.下列命题:①若a<1,则(a﹣1)aa111;②平行四边形既是中心对称图形又是轴对称图形;③9的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个【答案】A.【解析】考点:命题与定理.10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=23,∠A=60°,则S1+S2+S3的值为()A.310B.29C.313D.4【答案】A.【解析】5考点:相似三角形的判定与性质;平行四边形的性质.11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【答案】C.【解析】试题分析:由抛物线开口向下,可得a<0,再由抛物线的对称轴为直线x=﹣=1,可得b=﹣2a>0,由图象可知抛物线与y轴的交点在x轴上方,所以c>0,即可得abc<0,所以①错误;由b=﹣2a,可得2a+b=0,所以②正确;因抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,可得抛物线与x轴的另一个交点为(3,0),所以当x=2时,y>0,即4a+2b+c>0,所以③错误;因点(-)到对称轴的距离比点()对称轴的距离远,所以y1<y2,所以④正确.故选C.6考点:二次函数图象与系数的关系.12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420B.434C.450D.465【答案】D.考点:规律型:数字的变化类.二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【答案】21.【解析】试题分析:设方程的另一个根为m,根据根与系数的关系得到1•m=21,解得m=21.考点:根与系数的关系.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.【答案】26.【解析】7试题分析:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),考点:二次函数的应用.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【答案】247.【解析】试题分析:解:设CE=x,则BE=AE=8﹣x,因∠C=90°,AC=6,由勾股定理可得62+x2=(8﹣x)2,解得x=47,所以tan∠CAE=247647ACCE.考点:翻折变换(折叠问题);解直角三角形.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.8【答案】.【解析】考点:切线的性质;一次函数图象上点的坐标特征.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与xnym+n是同类项,求m、n的值;(2)先化简后求值:,其中a=3.【答案】(1)m的值是2,n的值是3;(2)原式=a3,当a=3时,原式=3.【解析】9试题分析:(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;,(2)根据分式的运算法则对分式化简,再将a=3代入化简后的式子即可解答本题.考点:同类项;解二元一次方程组;分式的化简求值.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【答案】详见解析.【解析】试题分析:(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)利用旋转的性质利用SAS易证△AQE≌△AFE,再由利用勾股定理即可得结论.试题解析:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴∠QAF=90°,∵∠EAF=45°,10∴∠QAE=45°,∴EA是∠QED的平分线;考点:旋转的性质;正方形的性质.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率150≤x<6090.18260≤x<70a370≤x<80200.40480≤x<900.08590≤x≤1002b合计请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?11(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【答案】(1)a=15,b=0.04,x=0.03,y=0.004;(2)在70≤x≤80范围内;(3)101.【解析】试题解析:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)12共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率=101202.考点:频数(率)分布表;频数(率)分布直方图;中位数;列表法与树状图法.20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【答案】(1)去年A型车每辆售价为2000元;(2)当新进A型车20辆,B型车40辆时,这批车获利最大.【解析】试题解析:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得200%)101(8000080000xx,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.13∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y最大=30000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.考点:分式方程的应用;一元一次不等式的应用.21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理
本文标题:2016年山东日照市中考试题数学试卷
链接地址:https://www.777doc.com/doc-3231245 .html