您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 鲁教版八年级数学下册-(1)
菱形的性质与判定能力提升训练一、选择题1.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cmB.10cmC.14cmD.20cm2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BDB.AB=BCC.AC=BDD.∠1=∠23.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.44.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形5.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2B.3C.D.26.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=ADB.AC=BDC.AC⊥BDD.∠ABO=∠CBO7.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.88.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直9.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1C.D.210.如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()A.3B.4C.1D.2二、填空题11.如图,在平行四边形ABCD中,添加一个条件______使平行四边形ABCD是菱形.12.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是______(只填写序号)13.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为______.14.已知菱形的两条对角线的长分别为5和6,则它的面积是______.15.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是______.三、解答题16.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.17.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.18.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.19.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.20.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?答案和解析1.【答案】D【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选:D.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.2.【答案】C【解析】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.3.【答案】A【解析】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选:A.根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键.4.【答案】D【解析】解:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选:D.根据菱形对角线互相垂直平分的判定方法进行解答.此题主要考查的是菱形的判定方法:对角线互相垂直的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.5.【答案】D【解析】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.6.【答案】B【解析】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.7.【答案】A【解析】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.8.【答案】D【解析】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.9.【答案】B【解析】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.10.【答案】A【解析】解:连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故①正确;∵∠EDF=60°,∴△EDF是等边三角形,∴②正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF;故④正确.∵△ADE≌△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故③错误.综上所述,结论正确的是①②④.故选:A.首先连接BD,易证得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握数形结合思想的应用.11.【答案】AB=BC或AC⊥BD【解析】解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.根据菱形的判定方法即可判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是记住菱形的判定方法.12.【答案】①②③④【解析】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.13.【答案】3【解析】解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD==24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=AC=3.根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.【答案】15【解析】解:∵菱形的两条对角线长分别是5和6,∴这个菱形的面积为5×6÷2=15.故答案为15.因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为15.此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【答案】(-5,4)【解析】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(-5,4).故答案为:(-5,4).利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.【答案】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【解析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形
本文标题:鲁教版八年级数学下册-(1)
链接地址:https://www.777doc.com/doc-3233496 .html