您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年海南省中考数学真题复习(附解析)
第1页,共16页2019年海南省中考数学真题复习(附解析)副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.如果收入100元记作+100元,那么支出100元记作()A.−100元B.+100元C.−200元D.+200元2.当m=-1时,代数式2m+3的值是()A.−1B.0C.1D.23.下列运算正确的是()A.𝑎⋅𝑎2=𝑎3B.𝑎6÷𝑎2=𝑎3C.2𝑎2−𝑎2=2D.(3𝑎2)2=6𝑎44.分式方程1𝑥+2=1的解是()A.𝑥=1B.𝑥=−1C.𝑥=2D.𝑥=−25.海口市首条越江隧道--文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×1096.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.7.如果反比例函数y=𝑎−2𝑥(a是常数)的图象在第一、三象限,那么a的取值范围是()A.𝑎0B.𝑎0C.𝑎2D.𝑎28.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为()A.(−1,−1)B.(1,0)C.(−1,0)D.(3,0)第2页,共16页9.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20∘B.35∘C.40∘D.70∘10.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.12B.34C.112D.51211.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2112.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.813B.1513C.2513D.3213二、填空题(本大题共4小题,共16.0分)13.因式分解:ab-a=______.14.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧𝐵𝐷⏜所对的圆心角∠BOD的大小为______度.15.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=______.第3页,共16页16.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______.三、计算题(本大题共1小题,共12.0分)17.(1)计算:9×3-2+(-1)3-√4;(2)解不等式组{𝑥+10𝑥+43𝑥,并求出它的整数解.四、解答题(本大题共5小题,共56.0分)18.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?19.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了______个参赛学生的成绩;(2)表1中a=______;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是______;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有______人.表1知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014第4页,共16页D90≤x<1001820.如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC=______度,∠C=______度;(2)求观测站B到AC的距离BP(结果保留根号).21.如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.22.如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连结CD.第5页,共16页(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.第6页,共16页答案和解析1.【答案】A【解析】解:收入100元+100元,支出100元为-100元,故选:A.根据正数与负数的意义,支出即为负数;本题考查正数与负数的意义;能够理解正数与负数的实际意义是解题的关键.2.【答案】C【解析】解:将m=-1代入2m+3=2×(-1)+3=1;故选:C.将m=-1代入代数式即可求值;本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.3.【答案】A【解析】解:a•a2=a1+2=a3,A准确;a6÷a2=a6-2=a4,B错误;2a2-a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.4.【答案】B【解析】第7页,共16页解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=-1;经检验x=-1是原方程的根;故选:B.根据分式方程的求解方法解题,注意检验根的情况;本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.5.【答案】D【解析】解:由科学记数法可得3710000000=3.17×109,故选:D.根据科学记数法的表示方法a×10n(1≤a<9)即可求解;本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.6.【答案】D【解析】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.根据俯视图是从上面看到的图象判定则可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.【答案】D【解析】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a-2>0,∴a>2.故选:D.反比例函数y=图象在一、三象限,可得k>0.本题运用了反比例函数y=图象的性质,关键要知道k的决定性作用.8.【答案】C【解析】第8页,共16页解:由点A(2,1)平移后A1(-2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(-1,0).故选:C.由点A(2,1)平移后A1(-2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(-2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.9.【答案】C【解析】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°-70°-70°=40°,故选:C.根据平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质解答.10.【答案】D【解析】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.本题考查了概率,熟练掌握概率公式是解题的关键.11.【答案】C【解析】解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,第9页,共16页又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.【答案】B【解析】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA-CP=,故选:B.根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.第10页,共16页本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.13.【答案】a(b-1)【解析】解:ab-a=a(b-1).故答案为:a(b-1).提公因式a即可.本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公因式.14.【答案】144【解析】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5-2)×180°-90°-108°-108°-90°=144°,故答案为:144.根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.15.【答案】√13【解析】解:由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==故答案为:由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.第11页,共16页16.【答案】02【解析】解:由题意可得,这列数为:0,1,1,0,-1,-1,0,1,1,…,∴前6个数的和是:0+1+1+0+(-1)+(-1)=0,∵2019÷6=336…3,∴这2019个数的和是:0×336+(0+1+1)=2,故答案为:0,2.根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.17.【答案】解:(1)原式=9×19-1-2=3-1-2=0;(2)解不等式x+1>0,得:x>-1,解不等式x+4>3x,得:x<2,则不等式组的解集为-1<x<2,所以不等式组的整数解为0、1.【解析】(1)先计算负整数指数幂、乘方及算术平方根,再计算乘法,最后
本文标题:2019年海南省中考数学真题复习(附解析)
链接地址:https://www.777doc.com/doc-3235530 .html