您好,欢迎访问三七文档
TheAnnalsofProbability2001,Vol.29,No.1,361–384ONTHEDISTRIBUTIONOFRANKEDHEIGHTSOFEXCURSIONSOFABROWNIANBRIDGE1ByJimPitmanandMarcYorUniversityofCalifornia,BerkeleyandUniversit´ePierreetMarieCurieThedistributionofthesequenceofrankedmaximumandminimumvaluesattainedduringexcursionsofastandardBrownianbridgeBbrt0≤t≤1isdescribed.TheheightMbr+jofthejthhighestmaximumoverapositiveexcursionofthebridgehasthesamedistributionasMbr+1/j,wherethedistributionofMbr+1=sup0≤t≤1BbrtisgivenbyL´evy’sfor-mulaPMbr+1x=e−2x2.TheprobabilitydensityoftheheightMbrjofthejthhighestmaximumofexcursionsofthereflectingBrownianbridgeBbrt0≤t≤1isgivenbyamodificationoftheknownθ-functionseriesforthedensityofMbr1=sup0≤t≤1Bbrt.Theseresultsareobtainedfromamoregeneraldescriptionofthedistributionofrankedvaluesofahomoge-neousfunctionalofexcursionsofthestandardizedbridgeofaself-similarrecurrentMarkovprocess.Contents1.Introduction2.Bridgesandexcursionsofaself-similarMarkovprocess3.ProofsofTheorems1and24.ApplicationstoBesselprocesses5.Evaluationsattimeτ16.Dualformulas7.Thejointlawofτ1andFjτ11.Introduction.LetBbr=Bbrt0≤t≤1beastandardBrownianbridge,thatis,Bbrt0≤t≤1d=Bt0≤t≤1B1=0whereBtt≥0isastandardone-dimensionalBrownianmotion.See[35]forbackground.TherandomopensubsettBbrt=0of[0,1]isacountableunionofmaximaldisjointintervals(ab),calledexcursionintervalsofBbr,suchthatBbra=Bbrb=0andeitherBbrt0forallt∈ab(apositiveexcursioninterval)orBbrt0forallt∈ab(anegativeexcursioninterval).LetMbr+1≥Mbr+2≥···0ReceivedSeptember1999;revisedJune2000.1SupportedinpartbyNSFGrantDMS-97-03961AMS2000subjectclassification.60J65.Keywordsandphrases.Brownianbridge,Brownianexcursion,Brownianscaling,localtime,self-similarrecurrentMarkovprocess,Besselprocess.361362J.PITMANANDM.YORbetherankeddecreasingsequenceofvaluessupt∈abBbrtobtainedas(ab)rangesoverallpositiveexcursionintervalsofBbr.Similarly,letMbr−1≥Mbr−2≥···0therankedvaluesof−inft∈abBbrtas(ab)rangesoverallnegativeexcursionintervalsofBbrandletMbr1≥Mbr2≥···0betherankedvaluesofsupt∈abBbrtas(ab)rangesoverallexcursioninter-valsofBbr.OnemotivationforstudyofthesequenceMbrjisthatthissequencedescribestheasymptoticdistributionasn→∞oftherankedheightsoftreecomponentsoftherandomdigraphgeneratedbyauniformlydistributedrandommappingofann-elementsettoitself[1].NotethatMbr+1=sup0≤t≤1BbrtMbr−1=−inf0≤t≤1BbrtMbr1=sup0≤t≤1Bbrt=Mbr+1∨Mbr−1(1)Themainpurposeofthispaperistodescribeasexplicitlyaspossiblethelawsofthedecreasingrandomsequencesintroducedabove.Inparticular,weobtaintheresultsstatedinthefollowingtwotheorems.Someoftheresultsofthispaperwerepresentedwithoutproofin[32].Theorem1.Foreachj=12thecommondistributionofMbr+jandMbr−jisdeterminedbytheformulaPMbr+jx=e−2j2x2x≥0(2)whilethatofMbrjisdeterminedbyPMbrjx=2j∞n=0−jne−2n+j2x2x≥0(3)Formula(2)amountstotheidentitiesindistributionMbr+jd=Mbr+1jd=1jε2(4)forj=12whereεdenotesastandardexponentialvariable.Thesec-ondidentityin(4)isL´evy’s[25]well-knowndescriptionofthedistributionofsup0≤t≤1Bbrt.Despiteitssimplicity,thefirstidentityin(4)doesnotseemobvi-ouswithoutcalculation.Thecasej=1of(3)isthewell-knownKolmogorov–SmirnovformulaforthedistributionofMbr1=sup0≤t≤1Bbrt,whicharisesintheasymptotictheoryofempiricaldistributionfunctions[40,12,39,26]:PMbr1x=2∞k=1−1k−1e−2k2x2=1−θ3π22πix2(5)RANKEDHEIGHTSOFBROWNIANEXCURSIONS363whereθ3zt=∞n=−∞eiπn2tcos2nzistheclassicalJacobithetafunctiondefinedfort=t+it∈witht0.Formula(3)showsthereisnorelationassimpleas(4)betweenthedistributionofMbrjforj1andthatofMbr1.DefinetheintensitymeasureνMforthesequenceMbrjbyνMA=E∞j=11Mbrj∈AforBorelsubsetsAof0∞,anddefineνM+similarlyintermsofMbr+j.Formula(2)impliesthattheseintensitymeasuresνMandνM+aregivenbytheformulaνMx∞=2νM+x∞=2∞j=1e−2j2x2=θ302πix2−1=θ2πx2−1(6)wherefort0,θt=∞n=−∞e−πn2t=θ30it(7)Notethestrikingparallelbetween(5)and(6).Wenowexplainhowformula(6)isrelatedtotheformulaofChung[7]forthedistributionofthemaximumM∗ofastandardBrownianexcursion,thatis,PM∗≤x=θ2πx2+4πx2θ2πx2x0(8)whereθisthederivativeofθ.Riemann[36]gavetheformula12ss−1∞0ts/2−1θt−1dt=2ξs=ss−1π−s/2s/2∞n=11nss1(9)anddeducedfromitandtheclassicalfunctionequation,θt=t−1/2θt−1t0that(9)definesauniqueentirefunctionξwhichsatisfiesthefunctionalequationξs=ξ1−ss∈364J.PITMANANDM.YORAsshownbyBianeandYor[4],Chung’sformula(8)forPM∗≤xisequiva-lenttothefollowingexpressionoftheMellintransformofM∗:EMs∗=π2s/22ξss∈(10)Seealso[45,3]forreviewsofthiscircleofideasandotherinterpretationsofθtinthecontextofBrownianmotion.ThesedescriptionsofthedistributionofM∗arerelatedtoourdescription(6)oftheintensitymeasureνMforthesequenceMbrjviatheknownresult[42,30]thattheintensitymeasureforthelengthsofexcursionsofthebridgeνVA=E∞j=11Vbrj∈AwhereVbrjisthelengthofthejthlongestintervalcomponentoftherandomsubsettBbrt=0of[0,1],isdeterminedbythedensityνVdvdv=12v3/20v1(11)Indeed,byconditioningonthelengthsofalltheexcursionsoftheBrownianbridge
本文标题:On the distribution of ranked heights of excursion
链接地址:https://www.777doc.com/doc-3255744 .html