您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第七章 电机装配工艺分解
电机装配可分为部件的分装配和成品的总装配。部件的分装配主要是定子分装配和转子分装配;成品的总装配主要是轴承装配、把电枢或转子安放到定子中并装上端盖、电刷装置的装配以及风扇、风扇罩、出线盒等的装配。这一章主要讨论交流电机装配中的若干主要问题。第6章电机装配工艺第6章电机装配工艺6.1尺寸链在电机装配中的应用6.2静平衡与动平衡6.3中小型电机装配工艺6.4大型座式轴承电机装配的特点6.5三相异步电动机的检验试验6.6电机的机械检查6.7电机振动测定方法简介6.8电机噪声测定方法简介6.1尺寸链在电机装配中的应用电机装配时,各零件的装配关系对电机的性能和质量有很大的影响。例如,零件的轴向尺寸公差定得不合适,没有进行尺寸链计算,则在电机装配后,零件间的相互位置不能保证设计要求。在严重情况下,可能使电机装配不起来。有时即使装上,也不能正常运行。故电机中各零件的尺寸公差,必须按尺寸链的计算方法进行校核。计算轴向尺寸链的方法一般采用“极大极小法”,计算所用的公式见第1章。6.1.1小型异步电动机的轴向尺寸链计算6.1.2安装尺寸C的计算6.1.1小型异步电动机的轴向尺寸链计算图6-1表示小型异步电动机各零件的装配关系。图6-1小型电动机装配示意图从图6-1中可以分析出三个尺寸链来,如图6-2所示。1.轴伸端轴承室弹簧片预压尺寸的计算2.非轴伸端间隙δ2尺寸的计算3.轴伸端间隙δ1尺寸的计算图6-2小型异步电动机尺寸链简图—定子机座止口两端面距离—端盖止口端面到轴承室底面距离—端盖轴承室深度(非轴伸端)B—端盖轴承室深度(轴伸端)—转轴两轴承挡间距离a—轴承宽度e—弹簧片深度—轴承盖止口深度1.轴伸端轴承室弹簧片预压尺寸的计算2.非轴伸端间隙δ2尺寸的计算3.轴伸端间隙δ1尺寸的计算自轴伸肩到距离较近的两个底脚螺栓通孔中任一孔的中心线的距离C,如图6-3所示,是一个安装尺寸。尺寸C超差时就会影响其他机械配套时整个机组的安装质量,故在技术条件中规定尺寸C有一定的允许偏差范围。6.1.2安装尺寸C的计算图6-3轴伸端装配示意图从图6-3可知,安装尺寸C是由几个尺寸组成的尺寸链中的封闭环6.1.2安装尺寸C的计算图6-4计算安装尺寸C的尺寸链简图6.2静平衡与动平衡6.2.1平衡的基本原理6.2.2不平衡的种类6.2.3校平衡的方法6.2.1平衡的基本原理电机的转动部件(如转子、风扇等)由于结构不对称(如键槽、标记孔等)、材料质量不均匀(如厚薄不均或有砂眼)或制造加工时的误差(如孔钻或其他)等原因,而造成转动体机械上的不平衡,就会使该转动体的重心对轴线产生偏移。转动时由于偏心的惯性作用,将产生不平衡的离心力或离心力偶。电机在离心力的作用下将发生振动。例6-1设在ϕ200mm的转子外圈处有不平衡重量10g,求当转速为3000r/min时产生的离心力是多少?解:已知M=10gr=100mmω=2π300060=314r/s6.2.2不平衡的种类电机转动部件的不平衡状况可分为静不平衡、动不平静及混合不平衡三种。1.静不平衡2.动不平衡3.混合不平衡1.静不平衡图6-5静不平衡1.静不平衡一个直径大而长度短的转子,放在一对水平刀架导轨上,不平衡重量M必然会促使转子在导轨上滚动,直到不平衡重量M处于最低的位置为止,这种现象表示了转子有“静不平衡”存在。由式(6-1)可知,静不平衡所产生的离心力大小与不平衡重量M成正比,与M的位置到轴心线的距离r成正比,与转子转动的角速度二次方成正比。这个离心力周期地作用于转动部分,因而引起电机的振动。2.动不平衡上面分析的情况,对于一些盘状零件(如带轮、电机的风扇等)是近似地符合实际情况的。但如果电机转子较长,情况就不一样了,如图6-6所示。图6-6动不平衡3.混合不平衡一般工件都不是单纯的存在静不平衡或动不平衡,而是两种不平衡同时存在,既有由不平衡重量M产生的静不平衡离心力F,又有由M1及M′1产生的不平衡力偶FaL同时存在,如图6-7所示。这样就可以用大小相等、方向不是相差180°的两个不平衡为F′a及F2来表示。这种不平衡称为混合不平衡。图6-7混合不平衡实际上的转子不平衡多数属于此种。6.2.3校平衡的方法校平衡方法的实质,就是要确定不平衡重量的大小及其位置,并加上或减去适当的重量使零件达到平衡。严格地说,任何转子都存在着混合不平衡,但在实用上,由于转子的情况及运行条件的不同,可以有不同的处理。1.校静平衡2.校动平衡表6-1转子校平衡类型表6-2转子单位重量许用不平衡量e当电机转子长度L与其直径D之比L/D较小且转速较低时,可以近似地看作一个盘状转动体,所以只作静平衡校验;反之,当L/D较大,转速又较高时,则必须进行校动平衡工作,详见表6-1。1.校静平衡1)转动转子,使不平衡重量M处于水平位置,然后在其对径上加一适当重量N,使其距离中心为r,如图6-12a所示,使转子尚能按箭头方向转过一个角度θ(θ=30°-50°),记下这个角度。2)将转子转过180°,使M处于另一侧的水平位置,如图6-12b所示,在N的地方再加上适当的重量P,使转子能按箭头方向转过等于第一次转动的角度θ。3)按以下的计算公式算出应加的平衡重量:6.3中小型电机装配工艺6.3.1转子装配6.3.2轴承装配6.3.3定子装配6.3.4气隙调整6.3.5电刷系统的装配6.3.1转子装配电动机在运行时要通过转轴输出机械功率,因此,转子铁心与轴结合的可靠性是很重要的。当转子外径小于300mm时,一般是将转子铁心直接压装在转轴上,当转子外径大于300、小于400mm时,则先将转子支架压入铁心,然后再将转轴压入转子支架。Y系列电动机是采用将转子铁心直接压装在转轴上的结构。转子铁心与轴的装配有三种基本形式:滚花冷压配合、热套配合、键联结配合。1.滚花冷压配合2.热套配合3.键联结配合1.滚花冷压配合图6-15滚花尺寸在滚花冷压配合中,轴的加工工艺是:精车铁心挡——滚花——磨削,然后压入转子铁心,再精磨轴伸、轴承挡以及精车铁心外圆。2.热套配合一般均利用转子铸铝后的余热(或重新加热转子)进行热套。采用热套工艺可以节省冷压设备,同时转子铁心和轴的结合比较可靠。因为热套是使包容件加热膨胀然后冷却,包容件孔即收缩抱住被包容件,它保证有足够的过盈值,可靠性较高。图6-16热套工具1—转子2—热套3—垫块4—底板3.键联结配合键联结配合的优点是能够保证联结的可靠性,便于组织流水生产;缺点是加工工序增多,在轴上开键槽会使转轴的强度降低,特别是在小型电机中影响更大。采用键联结时,键的宽度按规定要求选择。为了简化工艺,通常可以与轴伸采用同一键槽宽度。6.3.2轴承装配1)滴点。2)针入度。1)钙钠基润滑脂(SYB1403—62)。2)复合钙基润滑脂(SYB1407—625)。3)二硫化钼复合钙基润滑脂(企业标准[110])。4)锂基润滑脂(Q/SY1002—65)。6.3.2轴承装配图6-17轴承装配1)轴承径向游隙的大小。2)端盖和机座的刚度。3)轴向窜动。4)轴承装配。6.3.2轴承装配表6-4Y系列电机采用的轴承规格和振动限值(单位:dB)6.3.3定子装配图6-18定子铁心压入机座胎具1—下盘2—底圈3—心轴4—上压槽6.3.4气隙调整图6-19气隙的调整6.3.5电刷系统的装配在直流电机中,因为在正、负电刷下换问器的磨损程度是不一致的,所以必须合理地安排电刷排列的位置。电刷在换向器表面应错开排列,如图6-20所示。轴向位移对减少换向器表面轴向波浪度有利,周向位移对改善换向性能有利。为了保证优良的换向性能,各个极下的电刷组在换向器圆周上应均匀分布,为此,在装配时应用样板仔细检查。图6-20电刷排列示意图1—电刷2—换向器6.4大型座式轴承电机装配的特点6.4.1座式轴承6.4.2座式轴承电机的装配6.4.3轴承绝缘结构6.4.1座式轴承大型电机的转子重,转矩大,滚动轴承担负不了这样大的载荷,因而通常采用滑动轴承。轴承座通常用铸铁或铸钢制成。在轴承座上装有可沿水平直径拆开的两半式轴瓦,上面是轴承盖。轴瓦由铸铁(汽轮发电机的轴瓦用铸钢)制成,轴瓦的内表面浇上一薄层轴承合金。在转子较长的大中型高速电机中采用自整位的轴瓦,如图6-22所示。把轴瓦与轴承座配合的外表面做成球面或圆柱面,以使轴瓦按轴的挠度自动地相应调整;同时还可以补偿轴承安装时的误差,使轴颈处于它所需要的位置。图6-21座式轴承示意图滑动轴承一般都放在轴承座上,如图6-21所示。6.4.2座式轴承电机的装配1.电机安装前的准备2.底板和轴承座的安装3.定子和转子的装配图6-22自整位的轴瓦示意图6.4.3轴承绝缘结构图6-23轴电流的路径1—转子2—轴承室3—绝缘垫板4—底板5—轴电流路径6.5三相异步电动机的检验试验总装好的电动机,出厂以前要进行检验试验,其目的在于:验证电机性能是否符合有关标准和技术条件的要求;设计和制造上是否存在影响运行的各种缺陷;通过对检验试验结果的分析,从中找出改进设计和工艺和提高产品质量的途径。电机制造厂所做的检验试验一般可分为两类:检查试验(也叫出厂试验)和型式试验。6.5.1概述6.5.2三相异步电动机技术条件简介6.5.1概述另外,制造厂往往通过型式试验数据进行分析计算,以制订电机的出厂试验标准。检查试验的项目包括:1.机械检查2.电气性能试验1.机械检查1)轴承检查。2)外观检查。3)安装尺寸、外形尺寸及键的尺寸检查。4)径向跳动及底脚支承面的平行度和平面度的检查。5)振动检查。2.电气性能试验1)定子绕组在实际冷态下直流电阻的测定。2)耐电压试验。3)短时升高电压试验。4)空载电流和损耗的测定。5)堵转电流和损耗的测定。6)噪声试验。7)绕组对机壳及绕组相互间绝缘电阻的测定。2.电气性能试验1)经鉴定定型后制造厂第一次试制或小批量生产时。2)当设计或工艺上的变更,足以引起某些特性和参数发生变化时。3)当检查试验结果和以前进行的型式试验结果发生不可允许的偏差时。4)成批生产的电动机定期的抽试,其抽试时间至少每年一次。1)检查试验的全部项目。2)温升试验;3)效率、功率因数的测定。4)短时过转矩试验。5)最大转矩的测定。6)起动过程中最小转矩的测定。7)超速试验。6.5.2三相异步电动机技术条件简介1)规定电动机的防护等级(IP44)及冷却方式(IC411)。2)规定系列产品的功率等级、电动机的型号与同步转速及功率的对应关系,见表6-5。表6-5Y系列(IP44)电动机功率等级、电动机型号与同步转速及功率的对应关系表6-6Y系列(IP44)电动机电气性能保证值3)规定电动机的性能指标,见表6-6、表6-7。①力能指标——电动机在功率、电压及频率为额定值时其效率和功率因数的保证值;②运行指标——在额定电压下,电动机的堵转转矩倍数MSt/MN、最大转矩倍数Mmax/MN及堵转电流倍数ISt/IN。表6-7Y系列电动机电气性能保证值的容差4)规定电动机的绝缘强度和温升方面的要求。5)规定电动机在空载时测得的振动速度有效值及(A)计权声功率级数值的限值等。6.6电机的机械检查6.6.1轴中心高尺寸的检查6.6.2轴中心线对于底脚支承面平行度的检查6.6.3沿轴向长度的底脚支承面平面度的测量6.6.4底脚孔中心的径向距离(安装尺寸A)的测量6.6.5底脚孔中心的轴向距离(安装尺寸B)的测量6.6.6底脚孔对电机垂直中心线的径向距离的测量6.6.7自轴伸支承到距离较近的左右两个底脚孔的中心线间的距离(安装尺寸C)的测量6.6.8轴伸接合部中点的圆周面对轴中心线的径向圆跳动6.6.1轴中心高尺寸的检查检查时将电机搁置在平板上,用高度游标卡尺检查轴伸接合部分中点的高度H,用千分尺测量该部位的轴伸直径D,如图6-24所示,中心高H可用下式算出:图6-24安装尺寸H的测量6.6.2轴中心线对于底脚支承面平行度的检查检查方法是将电机搁置在平板上,用千分表检查轴伸接合部分的两端到底脚平面间距离之差,换算到每100mm长度的平行度,如图6-25所示。图6-25轴中心线对于底脚支承面平行
本文标题:第七章 电机装配工艺分解
链接地址:https://www.777doc.com/doc-3281415 .html