您好,欢迎访问三七文档
AGodunov-TypeFiniteVolumeMethodforSystemsofShallowWaterEquationsS.ChippadaC.DawsonM.MartinezM.WheelerCRPC-TR97687January1997CenterforResearchonParallelComputationRiceUniversity6100SouthMainStreetCRPC-MS41Houston,TX77005submitted2/97AGodunov-typeFiniteVolumeMethodfortheSystemofShallowWaterEquationsS.Chippada,C.N.Dawson,M.L.Martinez,andM.F.WheelerJanuary23,1997AbstractA nitevolumebasednumericalalgorithmhasbeendevelopedforthenumericalsolutionofthesystemofshallowwaterequations.ThealgorithmisaGodunovtypemethodandsolvestheRiemannproblemapproximatelyusingRoe’stechnique.Thealgorithmisdevelopedin2-Dwitharbitrarytriangulationsandconservesallprimaryvariablessuchasmassandmomentum.Theprocedureisimplementedonsomesimpletestcasesandsomecomplexcoastal owproblems.Thealgorithmisshowntoproduceexcellentresultswithoutspuriousoscillationsandagreesverywellwithknownanalyticalresultsandpredictionsmadebywaveequationformulationsoftheshallowwaterequations.ThebasicGodunovmethodisalsoextendedtosecond-orderaccuracythroughaslope-limitertypealgorithm.1INTRODUCTIONTheShallowWaterEquations(SWE)areusedtodescribefreesurfacehydrodynamicsinverticallywell-mixedwaterbodieswherethehorizontallengthscalesaremuchgreaterthanthe uiddepth(i.e.,longwavelengthphenomena).TheSWEareobtainedbyassuminghydrostaticpressuredistribution,andbyintegratingthethree-dimensionalincompressibleNavier-Stokesequationsalongthedepthofthe uidbody.Mostofthenaturallyoccurring uid owsareturbulent,andauniformvelocitypro leisassumedintheverticaldirection.Withtheseassumptions,thethree-dimensionalfreeboundaryproblemreducestoatwo-dimensional xedboundaryproblemwiththeprimaryvariablesbeingtheverticalaveragesofthehorizontal uidvelocitiesandthe uiddepth(seeWeiyan(1992)foraderivationoftheshallowwaterequations).TheSWEcanbeusedtostudymanyphysicalphenomenaofinterest,suchasstormsurges,tidal uctuations,tsunamiwaves,forcesactingono -shorestructures,andcontaminantandsalinitytransport(Kinnmark,1985).NumericalsolutionoftheSWEismadechallengingduetomanyfactors.TheSWEareasystemofcouplednonlinearconservationlawswhichneedtobesolvedoncomplicatedphysicaldomainsarisingfromirregularcoast-linesandislands.Thebottomseabed(bathymetry)isoftenveryirregular.ShallowwatersystemsaresubjectedtoawidevarietyofphenomenasuchastheCoriolisforce,thesurfacewindstress,atmosphericpressuregradient,andtidalpotentialforces.Inadditiontothesephysicalfactorsthereare1additionaldi cultiesarisingfromthemathematicalnatureoftheSWE.Mostimportantisthecouplingbetweenthe uiddepthandthehorizontalvelocity eldwhichcouldleadtospuriousspatialoscillationsifthenumericalalgorithmsarenotchosenwithcare.SeveralnumericalalgorithmshavebeendevelopedovertheyearsfortheSWE.Thesenumericalalgorithmscanbeclassi edintotwobroadcategories.Inthe rstcategory,theprimitiveformoftheSWEthatareobtainedfromthedirectverticalintegrationofthe3DincompressibleNavier-Stokes,arenumericallysolved.However,astraightforwarduseofequal-orderinterpolationspacesinthe niteelementcontextortheuseofnon-staggeredgridsinthe nitedi erencecontextcanleadtospuriousspatialoscillationsduetothenonlinearcouplingbetweenthe uiddepthandthehorizontalvelocity eld.Thesespatialoscillationscanbeminimizedand/oreliminatedthroughtheuseofstaggeredgridsormixedinterpolationspaces.Forexample,KingandNorton(1978)approximatevelocitiesthroughpiecewisequadraticandelevationsusingpiecewiselinearbasisfunctions.SeveralnumericalmethodsbasedontheprimitiveSWEandequalorderapproximationshavealsobeendeveloped(e.g.,Kawaharaetal.(1982),Szymkiewicz(1993),ZienkiewiczandOrtiz(1995)).Ifthespuriousspatialoscillationsaresuppressedthroughcarefulsplittingbetweentheelevationandvelocity eld,thenumericalproceduresbasedonstaggeredorequalorderapproximationsaregenerallyconsideredtobemoree cientfromanimplementationpointofview.Inthesecondcategory,theprimitiveSWEarereformulatedandthe rst-orderhyperbolicformoftheprimitivecontinuityequationisreplacedwithasecond-orderwaveequation(LynchandGray(1979),Luettichetal.(1991)).Clearly,theelevation-velocitycouplinghasplayedanimportantroleinthedevelopmentofnumericalalgorithmsforshallowwatersystems.Inthispaperwetakeaslightlydi erentviewoftheSWE.TheSWEareasystemofconservationlaws.MathematicallytheSWEareverysimilartothecompressibleEulerandNavier-Stokesequationswiththecompressibilitycomingfromthe nitespeedofthesurfacegravitywave.ArichvarietyofnumericalmethodshavebeendevelopedforcompressibleEulerequations,andtheseareextendedtotheSWEinthispaper.Inparticular,weconsidertheGodunov-type nitevolumemethodwhichhasbeenshowntobeastable,monotonicprocedure(Godunov1959,Hirsch1990,LeVeque1992).Thisnumericalprocedureconservesmassandmomentumlocally,andcanmodeldiscontinuitiessuchasshocks.AlcrudoandGarcia-Navarro(1993)usedaGodunov-type nitevolumemethodfortheSWE.Thepresentpaperappliestheproceduretounstructuredmeshesbasedonlineartriangles.Thee ciencyandaccuracyforrealisticcoastal owproblemsisestablishedandcomparisonsaremadewiththegeneralizedwavecontinuityequationformulationofLuettichetal.(1991).Inx2themathematicalmodelincludingtheboundary
本文标题:A Godunov-type finite volume method for the system
链接地址:https://www.777doc.com/doc-3283368 .html