您好,欢迎访问三七文档
AMixedFiniteVolumeElementMethodforFlowCalculationsinPorousMediaJimE.JonesInstituteforComputerApplicationsinScienceandEngineeringNASALangleyResearchCenterSUMMARYAkeyingredientinthesimulationof owinporousmediaistheaccuratede-terminationofthevelocitiesthatdrivethe ow.Thelargescaleirregularitiesofthegeology,suchasfaults,fractures,andlayerssuggesttheuseofirregulargridsinthesimulation.Workhasbeendoneinapplyingthe nitevolumeelement(FVE)methodologyasdevelopedbyMcCormickinconjunctionwithmixedmethodswhichweredevelopedbyRaviartandThomas.Theresultingmixed nitevolumeelementdiscretizationschemehasthepotentialtogeneratemoreaccuratesolutionsthatstan-dardapproaches.ThefocusofthispaperisonamultilevelalgorithmforsolvingthediscretemixedFVEequations.Thealgorithmusesastandardcellcentered nitedi erenceschemeasthe‘coarse’levelandthemoreaccuratemixedFVEschemeasthe‘ ne’level.Thealgorithmappearstohavepotentialasafastsolverforlargesizesimulationsof owinporousmedia.TheMixedFiniteVolumeElementDiscretizationInthis rstsection,webrie yintroducethemixed nitevolumeelement(FVE)dis-cretizationtechnique.Wewillnotdwelltoomuchonthedetailsofthediscretizationitselfasourfocushereisonsolvingthediscretesetofequationsthatthediscretizationproduces;adetaileddescriptionofthediscretizationcanbefoundin[7].Webeginbyconsideringthefollowingpartialdi erentialequationde nedonadomain inR2:( r A(x)r (x)=f(x)x2 ;r (x) =g(x)x2@ :(1)Hereweassumethedi usioncoe cientAisdiagonal,butvaluesofthecoe cientsmayjumpordersofmagnitudeatmaterialinterfaces.Inthecontextofreservoirsimulation,thisisthepressureequationforincompressiblesingle-phase owwhere isthepressureinthereservoir ,andtheboundaryconditionspeci esthe uxon@ .Asoneofourgoalsforthenewdiscretizationisaccurateapproximationsof owvelocities,wewillbeginbyreformulatingthisequationasa rstordersystemofequationswherevelocityappearsexplicitlyintheequations.Thisisdonebyintroducingthe owvelocityvariablesviathede nition,v Ar ;(2)andthenrewritingthepartialdi erentialequationin1as,r v=f:(3)Againinthecontextofreservoirsimulation,De nition2isDarcy’sLawandEqua-tion3isthemassconservationlaw.Inreservoirsimulation,thissameapproachoftreating owvelocityexplicitlyhasbeenusedinmixed nite-elementmethodswithconsiderablesuccess[5],[6],[13].Equations2and3alongwiththeboundaryconditionfromequation1representthe rstordersystemthatwediscretizeusingthemixedFVEmethod.Becauseoftheirregularityofreservoirgeology,faults,layers,etc.,uniformrectangulargridsarenotadequateinmodelingthe ow.ThemixedFVEdiscretizationwasdevelopedforalogicallyrectangulargridofirregularquadrilater-als.Aexampleofsuchagridisshownin gure1.Todiscretizethissystem,wefollowthe nitevolumeelement(FVE)principlesdevelopedin[3],[8],[9].ThetwomajorcomponentsofanyFVEdiscretizationschemeareachoiceofcontrolvolumestointegratethecontinuousequationoverandachoiceof niteelementspacesfortheunknowns.Importantindevelopingthediscretizationforgeneralquadrilateralsisthemap-pingrelatingageneralquadrilateraltoareferenceone.ConsiderthequadrilateralPwithvertices(x00;y00);(x10;y10);(x01;y01);and(x11;y11)shownin gure2.Letthereferencequadrilateral^Pbetheunitsquare.Thenthereisauniquebilinearmappingof^PontoPgivenby,x(^x;^y)=x00+(x10 x00)^x+(x01 x00)^y+(x11 x10 x01+x00)^x^yy(^x;^y)=y00+(y10 y00)^x+(y01 y00)^y+(y11 y10 y01+y00)^x^yIfPisconvex,thenthismappinghasinverse.Werestrictourselvestoconvexquadrilaterals,soforeach(x;y)2Pwehaveanassociatedpoint(^x;^y)2^P.Shownin gure2areseveralvectorsthatwillbeusefullaterindescribingthecomponentsofourdiscretizationtechnique.Foreach(x;y)2Pwede nefourvectors.X(x;y)istheimagethetheunitvector(1;0)in^P;Y(x;y)istheimagethetheunitvector(0;1)in^P; x(x;y)isaunitvectororthogonaltoY(x;y); y(x;y)isaunitvectororthogonaltoX(x;y):Forthe niteelementspacesweusethelowestorderRaviart-Thomaselementsonthequadrilateralelements,see[2],[14]and[11].Theycanbede nedasfollows.Thecharacteristicfunctionsofthequadrilateralsprovideabasisforthe niteelementspacefor .Thebasisfunctionsforv,arebestseenbyassociatingdegreesoffreedom2withnormalcomponentsonedgesofquadrilaterals.Atypicalbasisfunctionforthe niteelementspaceforvhassupportontwoadjacentquadrilateralsandhasaconstantnormalcomponentontheedgesharedbythequadrilateralsanditsnormalcomponentiszeroonotheredges.Themagnitudeofthebasisfunctionissuchthatthe uxonthecommonedgeisone,Zedgev ds=1:Theseconditionsalonedonotuniquelydeterminethebasisfunction;thefollowingadditionalconditiononthe niteelementspaceisneeded.WithinanyquadrilateralP,v xkYkvarieslinearlywith^x;constantwith^y;v ykXkvarieslinearlywith^y;constantwith^x:Atypicalbasisfunctionisrepresentedinthe gure3.Wenotethatthebasisfunc-tionshavecontinuousnormalcomponentsacrossgridinterfaces.Withthiswecanguaranteethatourcomputed owvelocitywillalsohavecontinuousnormalcompo-nentacrossgridedges.Thetruephysicalsolutionalsohasthisproperty,continuousnormalcomponentofvelocities,butnoteverynumericalschemeforapproximatingitdoes,aspointedoutin[12].Wenowneedtochoosethecontrolvolumes.Thequadrilateralsusedtodescribethegridarethenaturalc
本文标题:A Mixed Finite Volume Element Method for Flow Calc
链接地址:https://www.777doc.com/doc-3290887 .html