您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > the block Wiedemann algorithm
ArtileSubmittedtoJournalofSymboliComputationSubquadratiomputationofvetorgeneratingpolynomialsandimprovementoftheblokWiedemannalgorithmEmmanuelThomØ11LIX(UMRCNRS7650), olepolytehnique,91128PALAISEAUCEDEX,FRANCEAbstratThispaperdesribesanewalgorithmforomputinglineargenerators(vetorgeneratingpolynomials)formatrixsequenes,runninginsubquad-ratitime.ThisalgorithmappliesinpartiulartothesequentialstageofCoppersmith’sblokWiedemannalgorithm.ExperimentsshowedthatourmethodanbesubstitutedinplaeofthequadrationeproposedbyCop-persmith,yieldingimportantspeedupsevenforrealistimatrixsizes.Thebase eldswewereinterestedinwere nite eldsoflargeharateristi.Asanexample,wehavebeenabletoomputealineargeneratorforasequeneof4 4matriesoflength242;304de nedoverF2607 1inlessthantwodaysonone667MHzalphaev67pu.1.IntrodutionAlthoughitanbestatedinarathergeneralontext,wewillhereenvisiontheproblemof ndingalineargeneratorforamatrixsequeneinthelightofhowitappliestotheblokWiedemannalgorithm,desribedin[Coppersmith,1994℄.Thisalgorithmaddressestheproblemof ndingoneorseveralsolutionstoalargesparselinearsystemde nedovera nite eld,orinotherwords,solutionswtotheequationBw=0,whereBisasingularN Nmatrixde nedoverthe eldK=Fq,qbeingaprimepower,andBissparse:ithasonlyfewnon-zerooe ientsperrow.TheblokWiedemannalgorithmtakesadvantageofthislastfat(thefewernon-zerooe ientsBhas,thefastertheomputations).Manyother sparse linearalgebraalgorithmsexist[LaMahiaandOdlyzko,1990,Wiedemann,1986,Coppersmith,1993,Montgomery,1995℄.Thisisinontrasttomoregeneral-purposeproedures,likethewell-knownGaussianelimination,whihdoesnotonsidernorpreservethesparsityoftheinputmatrix.Sparselinearsystemsover nite eldsourinavarietyofontexts,more1E.ThomØ:Subquadratiomputationofvetorgeneratingpolynomials2spei allyinomputationalalgebrainumbertheory.Weoriginallyenoun-teredtheproblemintheourseofsolvingdisretelogarithmproblemsoverF2nwiththeindex-alulusalgorithmofCoppersmith[1984℄.Thisomputationisdesribedin[ThomØ,2001b,2002℄.Generally,anyindex-alulus-typealgorithmforomputingdisretelogarithmsinanappropriategroupallsforthesolutionofasub-problemofthiskind:see[Odlyzko,1985℄andforinstane[Gaudry,2000a,b℄.Hugesparselinearsystemsde nedoverthebinary eldF2alsoo-urredintheourseofthereentreord-breakingfatorizationsofompositenumberswiththeNumberFieldSieve[Cavallaretal.,2000,CABAL,2000℄.Coppersmith’sblokWiedemannalgorithmisalevergeneralizationofanolderalgorithmproposedin[Wiedemann,1986℄.Inthelatteralgorithm,oneisinterestedatsomepointin ndingalineargeneratorforagivensalarsequene.TheBerlekamp-MasseyortheextendedEulideanalgorithmsandothisinquadratitime.Subquadratialternativesexist,whihantakeadvantageoffastpolynomialmultipliationalgorithms.ThesearetheHGCD(half-gd)algorithmfrom[Ahoetal.,1974℄andthePRSDC(polynomialremaindersequenesbydivide-and-onquer)algorithmfrom[GustavsonandYun,1979℄.Coppersmith[1994℄introduesamulti-dimensionalvariantofWiedemann’salgorithm,whosemainadvantageisthatitallowspartialdistributionand/orparallelizationofpartoftheomputations.Inthisalgorithm,thelineargenerator ndingtaskistransformedintoamulti-dimensionalanalogue(de nedpreiselyinsetion2),whihCoppersmithsolvesbya matrixBerlekamp-Massey .TheworkinthispaperprovidesasubquadrativariantofCoppersmith’s ma-trixBerlekamp-Massey .TheomplexityredutionisobtainedbytheuseoftheFastFourierTransform(FFT)method.Ourmethodisreursive,astheHGCDorPRSDCalgorithmsfromwhihitatuallyadapted.Othersubquadratialgo-rithmsexistforthistask[BekermanandLabahn,1994℄,alsousingFFT.Wewilldisussmoredeeplytherespetiveomplexitiesandthedi erenesbetweenouralgorithmandBekermannandLabahn’sinparagraph2.2,onetherequiredoneptshavebeende ned.Anearlierversionofthisworkappearedin[ThomØ,2001a℄.Thispaperom-pletestheresultspresentedatISSAC’2001byprovidingabettertheoretialsettingandimprovingthepresentationofthealgorithm.Wehavealsonowim-plementedouralgorithmwithsuess,andproviderunningtimesthatouldbeemployedtodrawaomparisonwithBekermannandLabahn’smethod.Theorganizationofthispaperisasfollows.Setions2to4onentrateonthetaskofomputingalineargeneratorforamatrixsequene.Setion2de nesthisentraloneptofgeneratorin2.1,explainswhihquantitiesareomputedbyouralgorithmandbyBekermannandLabahn’sin2.2.Setion3presentstheframeworkandrequirementsthataresharedbyCoppersmith’salgorithmfor ndinglineargeneratorsandours.Ournewalgorithmispresentedinsetion4.Setions5to7onentrateonthein ueneofournewalgorithmontheblokWiedemannalgorithm.Setion5introduestheblokWiedemannalgorithm,anditsonnetionstothepresentationthatwemakeofthelineargeneratorE.ThomØ:Subquadratiomputationofvetorgeneratingpolynomials3 ndingproblem.Insetion6,wedisusstheoverallostoftheblokWiedemannalgorithm,alongwiththeoptimalvalueofitsparameters.Setion7disussespratialonernsabouttheimplementationofourapproahinsideamoreex-tendedomputationlikethedisretelogarithmomputationin[ThomØ,2001b,2002℄.Setion8showstheresultsofourexperimentswiththenewalgorithm.2.Lineargeneratorsformatrixsequenes2.1.De nitionsThroughoutthispaper,Kdenotesa nite eld,andmandnaretwohosenintegers.Wemakenohypothesesontheh
本文标题:the block Wiedemann algorithm
链接地址:https://www.777doc.com/doc-3291438 .html