您好,欢迎访问三七文档
ONTHELENGTHOFPROGRAMSFORCOMPUTINGFINITEBINARYSEQUENCES:STATISTICALCONSIDERATIONSJournaloftheACM16(1969),pp.145{159GregoryJ.Chaitin1BuenosAires,ArgentinaAbstractAnattemptismadetocarryoutaprogram(outlinedinapreviouspa-per)forde ningtheconceptofarandomorpatternless, nitebinarysequence,andforsubsequentlyde ningarandomorpatternless,in- nitebinarysequencetobeasequencewhoseinitialsegmentsareallrandomorpatternless nitebinarysequences.Ade nitionbasedon12G.J.Chaitinthebounded-transferTuringmachineisgivendetailedstudy,butinsuf- cientunderstandingofthiscomputingmachineprecludesacompletetreatment.Acomputingmachineisintroducedwhichavoidsthesedif- culties.KeyWordsandPhrases:computationalcomplexity,sequences,randomsequences,Turingma-chinesCRCategories:5.22,5.5,5.61.IntroductionInthissectionade nitionispresentedoftheconceptofarandomorpatternlessbinarysequencebasedon3-tape-symbolbounded-transferTuringmachines.2Thesecomputingmachineshavebeenintroducedandstudiedin[1],whereaproposaltoapplytheminthismannerismade.Theresultsfrom[1]whichareusedinstudyingthede nitionarelistedforreferenceattheendofthissection.AnN-state,3-tape-symbolbounded-transferTuringmachineisde- nedbyanN-row,3-columntable.Eachofthe3Nplacesinthistablemustcontainanorderedpair(i;j)ofnaturalnumberswhereitakesonvaluesfrom btob,andjfrom1to5.3Theseentriesconstitute,whenspeci ed,theprogramoftheN-state,3-tape-symbolbounded-transferTuringmachineandaretobeinterpretedasfollows.Anentry(i;j)inthekthrowandthepthcolumnofthetablemeansthatwhenthemachineisinitskthstate,andthesquareofitsone-wayin nitetape1Address:MarioBravo249,BuenosAires,Argentina.2Thechoiceof3-tape-symbolmachinesismademerelyforthepurposeof xingideas.3Herebisaconstantwhosevalueistoberegardedas xedthroughoutthispaper.Itsexactvalueisnotimportantaslongasitisnot\toosmall.Foranexplanationofthemeaningof\toosmall,andproofsthatbcanbechosensothatitisnottoosmall,see[1,Secs.2.1and2.2].(bwillnotbementionedagain.)ComputingFiniteBinarySequences:StatisticalConsiderations3BlackBoxTapeEndofTapeScanner100100::::::6Figure1.ATuringmachineHalted01111000::::::6Figure2.Theendofacomputationwhichisbeingscannedcontainsthepthsymbol,thenif1 k+i N,themachineistogotoits(k+i)-thstate(otherwise,themachineistohalt)afterperformingoneofthefollowingoperations:(a)movingthetapeonesquaretotherightifj=5;(b)movingthetapeonesquaretotheleftifj=4;(c)marking(overprinting)thesquarebeingscannedwiththejthsymbolif1 j 3.The rst,second,andthirdsymbolsarecalled,respectively,theblank(forunmarkedsquare),0,and1.Abounded-transferTuringmachinemayberepresentedschemati-callyasshowninFigure1.Wemakethefollowingstipulations:initiallythemachineisinits rststateandscanningthe rstsquareofthetape;nobounded-transferTuringmachinemayinthecourseofacalculationscantheendsquareofthetapeandthenmovethetapeonesquaretotheright;initiallyallsquaresofthetapeareblank;onlyorderstotrans-fertostateN+1maybeusedtohaltthemachine.Abounded-transfer4G.J.ChaitinTuringmachineissaidtocalculateaparticular nitebinarysequence(e.g.01111000)ifthemachinestopswiththatsequencewrittenattheendofitstape,withallothersquaresofthetapeblank,andwithitsscanneronthe rstblanksquareofthetape.Figure2illustratesama-chinewhichhascalculatedtheparticularsequencementionedabove.Beforeproceedingwewouldliketomakeacommentfromthepointofviewoftheprogrammer.Thelogicaldesignofthebounded-transferTuringmachineprovidesautomaticallyforrelocationofprograms,andtheprecedingparagraphestablisheslinkageconventionsforsubroutineswhichcalculate nitebinarysequences.Twofunctionsarenowde nedwhichplayfundamentalrolesinallthatfollows.L,the rstfunction,4isde nedonthesetofall nitebinarysequencesSasfollows:AnN-state,3-tape-symbolbounded-transferTuringmachinecanbeprogrammedtocalculateSifandonlyifN L(S).ThesecondfunctionL(Cn)isde nedasL(Cn)=maxSoflengthnL(S)wherethemaximumistaken(asindicated)overallbinarysequencesSoflengthn.Alsodenoteby5CnthesetofallbinarysequencesSoflengthnsatisfyingL(S)=L(Cn).Anattemptismadein[1,Sec.3.1]tomakeitplausible,onthebasisofvariousphilosophicalconsiderations,thatthepatternlessorrandom nitebinarysequencesoflengthnarethosesequencesSforwhichL(S)isapproximatelyequaltoL(Cn).Hereanattemptismadetoclarifythis(somewhatinformal)de nitionandtomakeitplausiblebyprovingvariousresultsconcerningwhatmaybetermedstatisticalpropertiesofsuch nitebinarysequences.ThesetC1ofpatternlessorrandom,in nitebinarysequencesisformallyde nedtobethesetofallin nitebinarysequencesSwhichsatisfythefollowinginequalityforallsu cientlylargevaluesofn:L(Sn)L(Cn) f(n)4Useoftheletter\Lissuggestedbythephrase\theLengthofprogramneces-saryforcomputing:::.5Useoftheletter\Cissuggestedbythephrase\themostComplexbinarysequencesoflength:::.ComputingFiniteBinarySequences:StatisticalConsiderations5wheref(n)=3log2nandSnisthesequenceofthe rstnbitsofS.Thisde nition,unlikethe rst,isquiteprecisebutisalsosomewhatarbitrary.Thefailuretostatetheexactcut-o pointatwhichL(S)becomestoosmallforStobeconsideredrandomorpatternlessgivestothe rstde nitionitsinformalcharacter.Butinthecaseof nitebinarysequences,
本文标题:On the length of programs for computing finite bin
链接地址:https://www.777doc.com/doc-3295850 .html