您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > Inverse Spectral Geometry
InverseSpectralGeometryRobertBrooks12DepartmentofMathematicsHebrewUniversityGivatRam,Jerusalem,IsraelandDepartmentofMathematics,UniversityofSouthernCaliforniaLosAngeles,California90089-1113March,19951PartiallysupportedbyNSFgrant9200313andaFulbrightfellowship2Currentaddress:DepartmentofMathematics,TheTechnion,Haifa,IsraelInthispaper,wewouldliketosketchapictureaimedatgivingacom-prehensiveanswertothequestion:howdoesonegoaboutreconstructingamanifoldMfromthespectrumofitsLaplaceoperator ?Itisunderstoodthat,ingeneral,thereisnouniquewayofreconstruct-ingM,becauseamanifoldisnotingeneraluniquelydeterminedfromitsspectrum.Soletusmakethefollowingde nition:De nition0.1AmanifoldMiscompactlydeterminedbyasetofconditionsP(whichMsatis es)ifthereisa nitesetfM1;:::;MkgandasetofmetricsM1;:::;MkonM1;:::;Mk,whicharecompactintheC1topology,suchthatanymanifoldM0whichsatis esPisisometrictoamanifoldlyinginoneoftheMi’s.Wethenhavethefollowing:Conjecture0.1Everycompactmanifoldiscompactlydeterminedbyitsspectrum.Wearestillfairlyfarawayfromthisconjectureinitsfullgenerality,althoughweremarkthatwecanobtaintheconjectureifweaddtothespec-trumsomecurvatureassumptionswhichinotherareasofgeometrywouldberegardedasfairlyweak.Ourfocusinthispaperwillbeonapresentationoftechniqueswhich,whenusedincombination,allowonetoattackthemainconjecture.Ourfeelingisthatthemaintechnicalcomponentsnecessarytoestablishthecon-jectureareinfairlygoodshape,andwewouldbesurprisedifaradicallydi erentapproachwouldberequired,orevenhelpful,toarriveatthe naldestination.Withthatsaid,however,ineachsectiontherearetopicsandproblemswhichremainunexplored,andwhosesolutionwouldbeamajorsteptowardsthesolutionofthemainconjecture.Itisourpleasuretosetouthereourviewofwhattheseproblemsare.Ouremphasisherewillbeonsettingouthowvarioustechniquesareused,ratherthanhowtheyareproved,althoughwehavenotshiedawayfromsketchingaproofwhenwethoughtitwouldbeilluminating.Theplanofthepaperisasfollows:inx1,wegiveanoverviewofideasrelatedtotheCheegerFinitenessTheorem[Ch2]anditsgeometricrelatives.Thisisthemaintechniquebywhichonebuildsupa\roughmodelofaman-ifoldfromgeometricdata.Inx2,wediscussbootstrappingtechniques.These1techniquesservetwoimportantpurposes: rstly,theyallowoneto\smoothouttheroughmodelsofx1.Secondly,byexaminingwhatnecessaryinputisrequiredtokeepthebootstrapmachineryrunning,wegetagoodpictureofwhatkindsofgeometricdataweneedtoextractfromthespectrum.Finally,inx3weaddresstheproblemofactuallyextractingthedesiredgeometricdatafromthespectrum.Acknowledgements:ItisapleasuretothankStigAnderssonforhisgeneroushospitalityduringthecourseoftheSummerSchoolinInverseSpec-tralGeometry,andinparticularforhislast-minutee ortswhichallowedmetoparticipateonshortnotice.Iwouldalsoliketothankhimforhisveryilluminatingsuggestionsonthepossiblescopeanddirectionofthepresentpaper.Finally,Iwouldliketotakethisopportunitytothankmycolleagues,includingthosepresentattheconferenceandthosewhocouldnotattend,formakingspectralgeometryatrulypleasantandexcitingareainwhichtowork.Whileititmyhopethatthepicturepresentedherewillinducesometojointhisareaofresearch,Ithinkthatafargreaterinducementwouldbetheopportunitytogettoknow,andtobeapartof,thecommunitywhichoccupiesitselfwiththesequestions.1CheegerFinitenessThe rstquestiononemustdealwithinattemptingtoreconstructamani-foldfromitsspectrumis:whatkindofpropertiesarerequiredtocompactlydetermineamanifold?Ine ect,theinversespectralproblemismadecon-siderablyeasieronceonehassomekindofmodelspaceonwhichtowork,althoughevenheretherearemanyinterestingandchallengingproblems.Sowewillaskthequestion:whatkindofmaterialisrequiredtobuildsuchamodelspace?Thesolutiontothisproblemindimension2isquitestandard,andgoesbacktoMcKeanandSinger[MS]:thea1termintheheatexpansionis,uptoanon-zeroconstant,theintegraloverMofthescalarcurvature.BytheclassicalGauss-BonnetTheorem,thisdeterminestheEulercharacteristicofM,andhence,intheorientablecase,thedi eomorphismtypeofM.Fordimensionsbiggerthan2,thetopologicalsituationisfarmorecom-plicated.Forinstance,eveninthecaseofmanifoldswithconstantcurvature2 1,thereexistmanifoldsMiwhosevolumesaccumulateatsome nitevalue(thevolumeofahyperbolicmanifoldwithcusps),suchthattheMi’shavedi erentfundamentalgroups.Itfollowsthata1(orevena2;a3;:::)willnotbeabletodi erentiatebetweenslightlyperturbedversionsoftheMi’s.WeliketothinkofCheeger’sFinitenessTheorem[Ch2]ashavingtwoparts:aphilosophicalpartandatechnicalpart.Thephilosophicalpartisastatementthatsomereasonablecollectionofgeometricpropertieswilldetermineaclassofmanifoldsupto nitelymanypossibilities.Thetechnicalpartthenaskstowhatextentonecanreducethelistofgeometricpropertiestoaminimum.HereisastatementofaphilosophicalversionoftheCheegerFinitenessTheorem:Theorem1.1([Ch2])Forpositivenumbersv;V;inj;andD,andarbitraryrealnumberskandK,letfMgbeacollectionofmanifoldssatisfying:(i)v vol(M) VforMfMg.(ii)k K(M) K;whereK(M)runsoverallsectionalcurvaturesinM,forMfMg.(iii)inj(M) inj,forMfMg.ThenfMgcontainsonly nitelymanydi eomorphismtypes.ItwasobservedbyGromov([Gr],seealso[Kas],[GW],[P]forproofs
本文标题:Inverse Spectral Geometry
链接地址:https://www.777doc.com/doc-3296444 .html