您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.3.2抛物线的简单几何性质
2.3.2抛物线的几何性质07.01.05前面我们已学过椭圆与双曲线的几何性质,它们都是通过标准方程的形式研究的,现在请大家想想抛物线的标准方程、图形、焦点及准线是什么?一、复习回顾:图形方程焦点准线lFyxOlFyxOlFyxOlFyxO2px2px2py2py)0,2(pF)0,2(pF)2,0(pF)2,0(pFy2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0)练习:填空(顶点在原点,焦点在坐标轴上)方程焦点准线开口方向xy62yx420722yx)0,(23F)0,1(F)1,0(F),0(87F23x1x1y87yxy42开口向右开口向左开口向上开口向下yox)0,2(pFP(x,y)一、抛物线的几何性质抛物线在y轴的右侧,当x的值增大时,︱y︱也增大,这说明抛物线向右上方和右下方无限延伸。1、范围由抛物线y2=2px(p0)220pxy而0p0x所以抛物线的范围为0x(,)xy关于x轴对称(,)xy由于点也满足,故抛物线(p0)关于x轴对称.(,)xyy2=2pxy2=2px2、对称性yox)0,2(pFP(x,y)定义:抛物线和它的轴的交点称为抛物线的顶点。yox)0,2(pFP(x,y)由y2=2px(p0)当y=0时,x=0,因此抛物线的顶点就是坐标原点(0,0)。注:这与椭圆有四个顶点,双曲线有两个顶点不同。3、顶点4、离心率yox)0,2(pFP(x,y)抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率,由抛物线的定义,可知e=1。下面请大家得出其余三种标准方程抛物线的几何性质。5、开口方向yox)0,2(pFP(x,y)抛物线y2=2px(p0)的开口方向向右。pyxpyxpxypxy22222222+X,x轴正半轴,向右-X,x轴负半轴,向左+y,y轴正半轴,向上-y,y轴负半轴,向下特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;思考:抛物线标准方程中的p对抛物线开口的影响.yox)0,2(pFP(x,y)4321-1-2-3-4-5-2246810y2=xy2=xy2=2xy2=4x21(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0))0,2(pF)0,2(pF)2,0(pF)2,0(pF2px2px2py2pyx≥0y∈Rx≤0y∈Ry≥0x∈Ry≤0x∈R(0,0)x轴y轴1例1:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),求它的标准方程,并用描点法画出图形。因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),22解:所以设方程为:)0(22ppxy又因为点M在抛物线上:所以:2(22)22p2p因此所求抛物线标准方程为:24yx(三)、例题讲解:2224yx作图:(1)列表(在第一象限内列表)x01234…y…(2)描点:022.83.54(3)连线:11xyO变式题1:求并顶点在坐标原点,对称轴为坐标轴,并且经过点M(2,),抛物线的标准方程。22(三)、例题讲解:(三)、例题讲解:练习1:顶点在坐标原点,焦点在y轴上,并且经过点M(4,2)的抛物线的标准方程为yxDyxCyxByxA212222.2.4.8.yxxyDxyCxyBxyA364.2.2.4.22222或(三)、例题讲解:练习2:顶点在坐标原点,对称轴是X轴,点M(-5,)到焦点距离为6,则抛物线的标准方程为52变式题2:已抛物线C的顶点在坐标原点,焦点F在X轴的正半轴上,若抛物线上一动点P到A(2,1/3),F两点的距离之和最小值为4,求抛物线的标准方程。(三)、例题讲解:课本例4P61:斜率为1的直线l经过抛物线y2=4x的焦点,且与抛物线相交于A,B两点,求线段AB的长。(三)、例题讲解:课本例题推广:直线l经过抛物线y2=2px的焦点,且与抛物线相交于A,B两点,则线段AB的长|AB|=x1+x2+P.练习3:已知过抛物线y2=9x的焦点的弦长为12,则弦所在直线的倾斜角是(三)、例题讲解:2323434656....DCBA或或或练习4:若直线l经过抛物线y2=4x的焦点,与抛物线相交于A,B两点,且线段AB的中点的横坐标为2,求线段AB的长.(三)、例题讲解:课本例5P62:已知抛物线的方程为y2=4x,直线l经过点P(-2,1),斜率为k.当k为何值时,直线与抛物线:只有一个公共点;有两个公共点:没有公共点.(三)、例题讲解:变式题3:已知直线y=(a+1)x与曲线y2=ax恰有一个公共点,求实数a的值.(三)、例题讲解:练习5:已知直线y=kx+2与抛物线y2=8x恰有一个公共点,则实数k的值为(三)、例题讲解:01.0.31.1.或或DCBA例4:已知过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q平分,求弦AB所在的直线方程.(三)、例题讲解:练习6:求以Q(1,-1)为中点的抛物线y2=8x的弦AB所在的直线方程.(三)、例题讲解:变式题4:求过点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.(三)、例题讲解:例5:求抛物线y2=64x上的点到直线4x+3y+46=0的距离的最小值,并求取得最小值时的抛物线上的点的坐标.(三)、例题讲解:练习7:抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是3....585734DCBA(三)、例题讲解:练习8:抛物线y2=x和圆(x-3)2+y2=1上最近的两点之间的距离是()1.1.2.1.211210DCBA(三)、例题讲解:例6:已知抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,若x1x2=-1/2,则m的值为()232532..2..DCBA(三)、例题讲解:变式题6:已知直线y=x+b与抛物线x2=2y交于A,B两点,且OA⊥OB(O为坐标原点),求b的值.232532..2..DCBA(三)、例题讲解:例7(习题2.3B组2P64):正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=2px(p0)上,求这个三角形的边长.yOxBA分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共的对称轴,则容易求出三角形的边长.线上,在抛物、的顶点解:如图,设正三角形BAOAByOxBA),则,)、(,且坐标分别为(2211yxyx.22222121pxypxy,,,所以:又22222121||||yxyxOBOA,即:022212221pxpxxx.022121))((pxxxx,,,020021pxx.21xx.||||21轴对称关于,即线段由此可得xAByy,,且轴垂直于因为设oAOxABxyxA30),(11yOxBA.3330tan11oxy,pyx2211.342||1pyAB.321py所以(三)、例题讲解:变式题7(复习参考题A组7P68):正三角形的一个顶点位于抛物线y2=2px(p0)焦点,另外两个顶点在抛物线上,求这个三角形的边长.分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共的对称轴,则容易求出三角形的边长.yOxBAF课堂练习:求适合下列条件的抛物线的方程:(1)顶点在原点,焦点F为(0,5);(2)顶点在原点,关于x轴对称,并且经过点M(5,-4).20xy2165yx2例2、探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程及焦点的位置。FyxO解:如图所示,在探照灯的轴截面所在平面建立直角坐标系,使反光镜的顶点与原点重合,x轴垂直于灯口直径。AB设抛物线的标准方程是:由已知条件可得点A的坐标是(40,30),代入方程可得230240p22(0)ypxp454p所求的标准方程为焦点坐标为2252yx45(,0)8补充(1)通径:通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2PP越大,开口越开阔(2)焦半径:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。焦半径公式:),(00yx(标准方程中2p的几何意义)利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为。24yx16483课堂练习:小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、通径;2.会利用抛物线的几何性质求抛物线的标准方程、焦点坐标及解决其它问题;
本文标题:2.3.2抛物线的简单几何性质
链接地址:https://www.777doc.com/doc-3307593 .html