您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据库 > High moments of the Riemann zeta-function
HIGHMOMENTSOFTHERIEMANNZETA{FUNCTIONJ.B.ConreyandS.M.GonekIntroductionAnimportantgoalofnumbertheoriststhiscenturyhasbeentoascertainthebehaviorofmomentsoftheRiemannzeta{function.Theseareimportantforseveralreasons.The rstistheirapplicabilitytothestudyofthedistributionofprimenumbers,oftenthroughzerodensityestimates.Second,theycanbeusedtoestimatethemaximalorderofthezeta{functiononthecriticalline.Notonlyisthisacentralquestioninthetheoryofthezeta{function,butq{analoguescouldallowustoestimatethemaximalsizesofsuchfundamentalarithmeticalobjectsastheclassnumbersofnumber eldsand(assumingthetruthoftheBirchandSwinnerton-Dyerconjecture)theTate{Shafarevichgroupsofellipticcurves.Indeed,thereisacloseconnectionbetweenourquestionandthemaximalsizeofFouriercoe cientsofhalf-integralweightcuspforms.TwoofthemostimportantearlyresultswereobtainedbyHardyandLittlewood[HL]in1918andIngham[I]in1926.HardyandLittlewoodprovedthat(1)ZT0j (1=2+it)j2dt TlogTasT!1,andInghamshowedthat(2)ZT0j (1=2+it)j4dt 12 2Tlog4T:Noanalogousformulahasyetbeenprovedforanyhighermoment,anditseemsunlikelythatanywillbeinthenearfuture.Infact,theproblemissointractablethat,untilafewyearsago,noonewasevenabletoproduceaplausibleguessfortheasymptoticmainterm.Recently,however,ConreyandGhosh[CG2]foundaspecialargumentinthecaseofthesixthpowermomentthatledthemtoconjecturethat(3)ZT0j (1=2+it)j6dt 429!Yp 1 1p 4 1+4p+1p2 !Tlog9T:ResearchofbothauthorswassupportedinpartbytheAmericanInstituteofMathematicsandbygrantsfromtheNSF.TypesetbyAMS-TEX12J.B.CONREYANDS.M.GONEKThemainobjectofthispaperistodescribeanewgeneralapproachwhich,inprinciple,couldproducethecorrectformulaforeveryevenintegermomentIk(T)=ZT0j (1=2+it)j2kdt;andtocarryitoutforboththesixthandeighthpowers.Thisleadstothesamesixthpowermomentconjectureasaboveandlendsadditionalstrongsupporttoitinasensetobedescribedbelow.Fortheeighthpowermoment,weobtainthefollowingnewconjecture.Conjecture1.AsT!1,ZT0j (1=2+it)j8dt 2402416!Yp 1 1p 9 1+9p+9p2+1p3 !Tlog16T:Wewillalsodescribehowourmethodprovidesinsightintothesizeofhighermomentsofthezeta{function,itsmaximalorderinthecriticalstrip,andthebehaviorofadditivedivisorsums.Whilewritingthispaper,theauthorslearnedthatJ.KeatingandN.Snaith[KS]havemadeahighmomentsconjecturebasedonacompletelydi erentapproach.Insteadoftheattackthroughapproximatefunctionalequations,meanvaluetheorems,andadditivedivisorsumsemployedhere,theyproveageneralresultonmomentsofrandommatriceswhoseeigenvalueshaveaGUE(GaussianUnitaryEnsemble)distribution.Ifthezeta{functionismodeledbythedeterminantofsuchamatrix,andtherearereasonstobelieveitis,thenthemomentstheycalculateapplytothezeta{functionaswell.Itisremarkablethatourconjectureandtheirs,whichwestatelater,agreeforthesixthandeighthmoments,anditsuggeststhatbotharelikelytoberight.Webeginbyoutliningthemainideasbehindourapproachstartingwithabriefdiscus-sionofapproximatefunctionalequations.Fors= +itand 1, k(s)hastheDirichletseriesexpansion k(s)=1Xn=1dk(n)ns;wheredk(n)isthekthdivisorfunction,whichismultiplicativeandde nedatprimepowersbydk(pj)= k+j 1j .Theseriesdoesnotconvergewhen 1,butwecanneverthelessapproximate k(s)inthisregionbyasumoftwoDirichletpolynomials.Thisiscalledanapproximatefunctionalequation,anditsprototypeis(4) (s)k=Dk;N(s)+ (s)kDk;M(1 s)+Ek(s);whereDk;N(s)=NXn=1dk(n)ns;HIGHMOMENTSOFTHERIEMANNZETA{FUNCTION3Ek(s)isanerrorterm,MN= t2 k,and (s)=( )s 1=2 (1 s2) (s2)isthefactorfromthefunctionalequationforthezeta{function,namely (s)= (s) (1 s):Notethatfromthelastequationitfollowsthat (s)satis es (s) (1 s)=1:Takings=1=2+itin(4),integratingthesquareofthemodulusofbothsides,andassumingthatEk(1=2+it)issu cientlysmall,weobtainZ2TTj (1=2+it)j2kdt Z2TTjDk;N(1=2+it)j2dt+Z2TTjDk;M(1=2+it)j2dt+2Z2TT (1=2 it)kDk;N(1=2+it)Dk;M(1=2+it)dt:(5)Now (1=2 it)=exp itlogt2 e (1+O(1=t))ast!1,sowe ndthat (1=2 it)k(mn) it=exp itlog(t=2 e)kmn (1+O(1=t)):Thishasastationaryphaseatt=2 (mn)1=k,whichisgenerallyoutsidetheintervalofintegration.Thissuggeststhatthethirdintegralontheright{handsideof(5)issmallerthanthelargerofthe rsttwo.(ThatitisnolargercanbeseenfromtheCauchy{Schwarzinequality.)ItisprobablyalsothecasethattintheconditionMN= t2 kcanbereplacedbyTwhentislarge.Thus,weexpectthatforeverypositiveintegerk,(6)Z2TTj (1=2+it)j2kdt Z2TTjDk;N(1=2+it)j2dt+Z2TTjDk;M(1=2+it)j2dt;where(7)MN= T2 kwithM;N 1=2;orN T2 kifM=0:Infact,usingclassicalmethods,wecanprovethat(6)holdssubjectto(7)whenk=1,andalsowhenk=2providedthatmax(M;N) T.Whenk 3,however,theknown4J.B.CONREYANDS.M.GONEKboundsforEk(s)in(4)aretoolargetogive(6),anditisalsodi culttoshowthatthethirdtermin(5)reallyissmallerthantheothertwo.Nevertheless,itispossibletoovercometheseproblemsbyappealingtoamorecomplicatedformoftheapproximatefunctionalequation rstdevelopedbyA.Good[Go]for (s)andfortheL{functionsattachedtocuspforms(whichareanalogousto (s)2).AcarefulapplicationofGood’smethodallowsonetoestablishaformulalike(6)butwiththecoe cientsinDk;N(s)andDk;M(s)smoothedbycertainweightfunctions.Wehaveavoidedthisrigorousapproachinordertokeeptheexpositionasstraightforwardaspossi
本文标题:High moments of the Riemann zeta-function
链接地址:https://www.777doc.com/doc-3314052 .html