您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 求几何体体积的常用方法总结[1]
求体积的几种常用方法一、分割法----------------(椎体)对于给出的一个不规则的几何体,不能直接套用公式,常常需要运用分割法,按照结论的要求,将原几何体分割成若干个可求体积的几何体,然后再求和.【例1】如右图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为.分析由于本题中多面体ABCDEF为非规则几何体,不能直接求其体积,因此可以考虑用分割法,使其分割为如图所示的两个体积相等的三棱锥与一个直三棱柱.解析分别过A、B作EF的垂线,垂足分别为G、H,连结DG、CH,容易求得EG=HF=.21,23HCBHGDAG由题意得.32221221213112212112221BHCAGDBHCFAGDEABCDEFBHCAGDVVVV,SS本题还可以这样来分割:取EF的中点P,则多面体ABCDEF分割成正四面体ADEP、PBCF和正四棱锥P—ABCD,也易于计算.点评二、补形法--------------(柱体、椎体)利用平移、旋转、延展或对称等手段,将原几何体补成便于求体积的几何体,如正方体、长方体等.【例2】已知:长方体中,AB=4,BC=2,=3,求三棱锥的体积1BBCADB11解法分析:111111DCBAABCDCADBVV111BADAV11BADBV111BADCV11BADDV3241111DCBAABCDV=243242131111BADAV=48442411CADBV1111DCBAABCD1A1D1C1BABCD三、等积转换法----------(等体积法)“等积转换法”是针对当所给几何体的体积不能直接套用公式或涉及的某一量(底面积或高)不易求解时,可以转换一下几何体中有关元素的相对位置进行计算,该方法尤其适用于求三棱锥的体积.【例3】在边长为a的正方体ABCD—A1B1C1D1中,M、N、P分别是棱A1B1、A1D1、A1A上的点,且满足A1M=A1B1,A1N=2ND1,A1P=A1A,如图,试求三棱锥A1—MNP的体积.2143分析若用公式V=Sh直接计算三棱锥A1—MNP的体积,则需要求出△MNP的面积和该三棱锥的高,两者显然都不易求出,但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,显然就容易解答了.解析31MNAPMNPAVV11.241433221213121313111aaaaPANAMAABCD1A1B1C1DE例1:如图,在边长为a的正方体中,点E为AB上的任意一点,求三棱锥的体积。1111DCBAABCD11DEBADASEBA1131aa22131361a解法分析:V=11DEBA11EBADV的体积求四棱锥上,在侧棱,点体积是的、三棱柱例'''36'''2AABBMCCMCBAABCB'BCAC'A'M2436323231'''’’’’’’’’’’’’CBAABCAABBMCBAABCAABBMABCMAABBMCBAABCVVVVVVV解:B'BACA'C'MB'BCAC'A'M转移顶点法例3:已知三棱锥P—ABC中,,,PA=BC=a且ED=b求三棱锥的体积BCPAPAEDBCEDPABCEDPADCPADBABCPVVVCDSBDSPADPAD3131CBSPAD31aba2131ba261解法分析:abaBCEDBCPAPADBC平面垂面法例4已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别是棱AA1与CC1的中点,求四棱锥A1-EBFD1的体积?BB1CDAC1D1A1EF易证四边形EBFD1为菱形,连结EF,则解法分析:EBFAEFDAEBFDAVVV11111EDAFEFDAVV1111aSEDA1131EBAFEBFAVV11aSEBA131或者:11112EFDAEBFDAVV点评转换顶点和底面是求三棱锥体积的一种常用的方法,也是求后面要学习到的求点到平面距离的一个理论依据,相应的方法叫等积法.四、还原图形法此类题主要是没有直接给出几何体,而是给出了几何体的三视图,求体积时一般需要根据三视图还原成直观图,再进行解答.【例4】下图是一个几何体的三视图,根据图中所标的数据求这个几何体的体积.分析本题题设中三视图已经给出,欲求原几何体的体积,需根据“长对正、高平齐、宽相等”的原则将三视图还原成直观图.解析由三视图可知这个几何体是由一个三角形旋转得到的几何体,如右图,△ABC绕着过点B且垂直于BC的直线旋转一周得到的几何体即为原几何体,其体积是圆台的体积减去圆锥的体积.因为圆台的上、下底面的半径分别是BC=1、OA=2,且高BO=3,故所求几何体的体积V=V圆台-V圆锥=7π-4π=3π.点评由三视图还原成几何体时,要注意三视图与原几何体之间的各数据的对应关系.返回当棱锥的体积公式无法直接使用时ShV31通过转移顶点法切割法补形法达到分散的转化为集中课堂小结复杂的转化为简单陌生的转化为熟悉小结:1、锥体体积公式的证明体现了从整体上掌握知识的思想,形象具体地在立体几何中运用“割补”进行解题的技巧。2、三棱锥体积的证明过程中充分揭示了三棱锥的独特性质:可根据需要重新安排底面,这样也为点到面的距离、线到面的距离计算提供了新的思考方法。3、锥体的体积计算在立体几何体积计算中,占有重要位置,它可补成柱体,还可以自换底面、自换顶点,在计算与证明中有较大的灵活性,技巧运用得当,可使解题过程简化。
本文标题:求几何体体积的常用方法总结[1]
链接地址:https://www.777doc.com/doc-3327713 .html