您好,欢迎访问三七文档
arXiv:cond-mat/0310266v1[cond-mat.dis-nn]11Oct2003Commentsonevolutionofooperation:evolutionarystabilityinenhanedDove-HawkmodelPawelSobkowiz∗11thOtober20031AbstratOneofthebestexamplesoftraditionalanalysisofevolutionarystablestrate-gies(ESS)isprovidedbythesoalledDove-Hawkmodel.Inthispaperwepresentseveralenhanementstothemodelaimedatdesribingtheevolutionofooperativebehavior.InadditiontoDovesandHawksweintroduesev-eralgroupsofCooperators,whoatasDoveswithintheirowngroup,butasHawksoutsideit.Thisallowstostudyhowooperatinggroupsmaygrowandahievestabilitywithinanonrepeatingevolutionarygamesframework.Dependingoninitialonditions,the nalstablepopulationmayhaveone,all-enompassingCooperatorpopulationorseveralompetingliques.Af-tertakingintoaountthatCooperatorsbearostsneessarytoreognizemembersofone’sowngroupitispossibletoseepopulationswhereCooper-atorseventuallyloseagainstHawksorpopulationswhereseveralliquesofCooperatorsoexistwithaHawkpopulation.2TheoretialbakgroundThelassialworksbyMaynardSmith[1,2℄introduingandpopularizingtheevolutionarygametheoryandtheoneptofEvolutionaryStableStrategyhaveresultedinwidespreadinterestinsuhmodelingapproahbysoialsientists,biologistsandeonomists.∗e-mailaddress:pawelsobpozta.onet.pl1Withintheevolutionarygamestheoryonedesribesapopulationon-sistingofNTOT‘players’,whointeratamongthemselves.Theformoftheinterationissimpli edto‘ontests’,whiharesingleeventsduringwhihtwoplayersdeidehowtoshareamongthemselvessomevaluableresoure.Forsimpliityitisusuallyassumedthattheresourevalueisonstant(de-notedbyV).For‘peaefully’resolvedonteststhevalueisdividedamongthepartiipantplayers(equallyorunequally).Insituationswhereontestsdevelopsintoa ghtovertheresoure,playerspartiipatinginthe ghtmaysu erinjuries,expendunneessaryresoureset.,whihismodeledbyin-ludingapenaltyost−h(harm).Forsimpliitytheosthisassumedtobeequalforbothplayerspartiipatingina ght.Therearetwomainvariantsofevolutionarygames:Nonrepetitive,singleinstaneontests,inwhihpartiipantshavenomemoryofpreviousen-ountersandthusannotadapttheirstrategiestopastbehaviouroftheiropponents,andRepetitiveGames,wherethememoryallowsompliatedstrategies,individualbehaviorandlearning.WithinthispaperweonentrateonNonrepetitiveGames.Evenforsuhsimpli edsituationplayersmayusedi erentstrategies.ToahievethestatusofEvolutionaryStableStrategy,spei behaviourσmusteither:dobetteragainstitselfthananyothervariantstrategyor,ifsomemutantstrategywoulddojustaswellagainstσasσitself,thenσmustdobetteragainstthemutantthanthemutantagainstitself[1℄.Themodelingo thepopulationdynamisisbestperformedassumingthattheativitiestakeplaewithinseparateroundsoriterations.Suhiterationsmayorrespond,forexample,toyearlyylesorbiologialgenera-tions ormaynotorrespondtoanydiserniblequantizationofthemodeledsystem,butbeaonvenientsimpli ation.Withinsuhiterationsplayersinteratamongthemselvesandompeteforresoures.Betweeniterations,followingtheaverageoutomes(payo s)fordi erentgroups,theompositionofthetotalplayerpopulationisadjusted.Afterseveral(many)iterationsoneandeterminewhihofthestrategiessueedsandbeomesanESS.ThebestknownofsuhmodelsistheHawk-DovemodelofMaynardSmithandPrie[1℄.Thepopulationonsistsoftwogroups:Doves(D)andHawks(H).Thesegroupsarebestharaterizedbytheirbehaviorinon-tests.WhenaDovemeetsaDove,theyresolvetheontestpeaefully,with-outa ght.ThevalueVisthen,statistially,splitinhalfbetweentheontestants.Thustheaverageoutome(payo )foraplayerinaD-DmathisV/2.WhenaDovemeetsaHawk,thelatter‘bullies’theDoveandgetsthewholevalueofV,leavingtheDoveemptyhanded.Ontheotherhand,whentwoHawksmeeta ghtensuesandtheaveragepayo isV/2−h.ForV/2−h0(ifonly‘pure’strategiesareallowed)theHawkbeomesanESS,2byvirtueofwinningtheontestswiththeDoves.TheHawksandDovesmodelservesasperfetexamplethatanevolution-arystablestrategyisnotneessarilytheonethatreturnstheebestresultsforthepartiipatingplayers.InapureDovepopulationtheaveragepay-o ofV/2isgreaterthaninHawkpopulation.Nevertheless,beausetheoutomeofinter-‘speies’enountersarealwaysfavorabletoHawks,evenasmallHawkpopulationwouldinvadeaDovesoietyandhaveevolution-aryadvantage.InaDovepopulationinvadedbyHawks,theaveragepayo diminishesastheproportionofHawksgrows.TheaimofthispaperistodesribesomeonsequenesoftheextensionoftheHawk-Dovemodelwithinanonrepetitiveparadigm.Theextensionisbaseduponanintrodutionofanewstrategy,alledhere‘Cooperator’.ACooperatorbehaveslikeaDove whenitompeteswithamemberofitsowngroup.ButwhenaCooperatorenountersaHawkoraDoveitbehavesasaHawk.ToobtainmoregeneralresultsweintrodueseveralseparateCooperatorgroups,denotedbyCi,whihatfriendlywithintheirowngroup,butompetitivelyoutsideit.Inthesimplestase,withjustoneCooperatorgroup,thedynamisofthesystemistrivial.TheCooperatorpayo isalwaysbetterthanthepayo foraHawk.CooperatorsouldeasilyinvadeaDovesoiety.ThussinglegroupCooperatorstrategyisanESS.Itisworthnoting,thatalthoughweplaythegamewithout‘memory’,toallowtheCooperator-likebehaviorsomesortofreognitionofgroupmem-bershipisneessary.Thisanbeahievedthroughsomelabeling,pre-ontestbehaviouret1.Asweareinterestedinexploringfurtherfurth
本文标题:Comments on evolution of cooperation evolutionary
链接地址:https://www.777doc.com/doc-3335603 .html