您好,欢迎访问三七文档
NumericalSolutionofEllipticProblemsbytheWaveletElementMethodC.Canuto,A.TabaccoDipartimentodiMatematica,PolitecnicodiTorino,C.soDucadegliAbruzzi,24,10129,Torino,ItalyE-mail:ccanuto@polito.it,tabacco@polito.itK.UrbanInstitutf urGeometrieundPraktischeMathematik,RWTHAachen,Templergraben55,52056Aachen,GermanyE-mail:urban@igpm.rwth-aachen.deTheWaveletElementMethod(WEM)isaconstructionofmultiresolutionsystemsandbiorthogonalwaveletsonfairlygeneraldomains.Domaindecompositionandmappingtoareferencedomainallowtheuseoftensorproductsofscalingfunctionsandwaveletsontheunitinterval.Appropriatematchingconditionsacrosstheinterelementboundariesyieldagloballycontinuousbiorthogonalwaveletbasis.Inthispaper,wedetailthegeneralconstructionfortwo{dimensionaldomainsandshowhowtousetheWEMforthenumericalsolutionofellipticPDE’sinanL{shapeddomain.1IntroductionTheconstructionofmultiresolutionsystemsandwaveletsongeneraldomainsandmanifoldsinIRnisacrucialissueforapplyingwaveletmethodstothenumericalsolutionofoperatorequationssuchaspartialdi erentialandintegralequations.Thisproblemhasbeenrecentlyaddressedbymanyauthors[4,5,7,10,15,16,17,18].In[4],theWaveletElementMethod(WEM)wasintroducedborrowingideasfromanalogousconstructionsinspectralmethods.Tensorproductsofscalingfunctionsandwaveletsontheunitintervalaremappedtothesubdo-mainsinwhichtheoriginaldomainissplit.Bymatchingthesefunctionsacrosstheinterelementboundaries,globallycontinuousbiorthogonalwaveletsystemsareobtained,whichallowthecharacterizationofcertainfunctionspacesandtheirduals.Thesespacescontainfunctionswhichhaveaprescribedsmooth-nessineachsubdomain(withrespecttoaSobolevorBesovscale),andsatisfysuitablematchingconditionsattheinterfaces.While[4]dealswiththegeneralspatialdimensionn,herewefocusontwo{dimensionaldomainsandwederivethecorrespondingmatchingcondi-1tions.Moreover,weconsidera rstexampleofapplicationoftheWEMtothenumericalsolutionofellipticPDE’sindomainswhicharenottheimageofasinglesquare.Tothisend,weconsideranL{shapeddomain.Weexplicitlyderivethematchingcoe cientsforthewaveletbasis;next,wepresentsomenumericalresultsthatshowthefeasibilityoftheproposedmethodandcon rmthetheoreticallyexpectedfeaturesofthemultiscalebasis.Theoutlineofthepaperisasfollows.InSection2wedescribebiorthog-onalsystemsondomainswhicharethesmoothimageofasinglesquare.InSections3and4,wereviewtheconstructionofmatchedscalingfunctionsandwavelets,respectively.Section5isdevotedtothetreatmentofboundaryconditions.Finally,Section6describestheapplicationoftheWEMtotheL{shapeddomain.Throughoutthepaper,wewillfrequentlyusethefollowingnotation:byA BwedenotethefactthatAcanbeboundedbyamultipleconstanttimesB,wheretheconstantisindependentofthevariousparametersAandBmaydependon.Furthermore,A B A(withdi erentconstants,ofcourse)willbeabbreviatedbyA B.2BiorthogonalsystemsonsimpledomainsInthissection,weusetensorproductsandmappingstoconstructscalingfunctionsandbiorthogonalwaveletsonsmoothimagesofasquare,startingfromsuitablemultiresolutionanalysesontheunitinterval.2.1Theinterval[0;1]DualmultiresolutionanalysesinL2(0;1)canbeconstructedasfollows(see[1,9,13,19]).Westartfromtwofamiliesofscalingfunctions j:=f j;k:k2 jg;~ j:=f~ j;k:k2 jg L2(0;1);wherej(greaterorequaltosomesuitablej0)isthelevelindexand j:=f j;1;:::; j;Kjgwith0= j;1 j;2 j;Kj=1:(1)So,eachbasisfunctionisassociatedwithanode,orgridpoint,intheinterval[0;1];theactualpositionoftheinternalnodes j;2;:::; j;Kj 1willbeirrelevantinthesequel,exceptthatitisrequiredthat j j+1(seei)below).Itwillalsobeconvenienttoconsider jasthecolumnvector( j;k)k2 j,andanalogouslyforothersetsoffunctions.SettingSj:=span j,~Sj:=span~ j;theconditionsa)-l)listedinProperty2.1areful lled:2Property2.1a)Thesystems jand~ jarere nable,i.e.,thereexistmatricesMj;~Mj,suchthat j=Mj j+1,~ j=~Mj~ j+1.Thisimplies,inparticular,thattheinducedspacesSj,~Sjarenested,i.e.,Sj Sj+1,~Sj ~Sj+1.b)Thefunctionshavelocalsupport,i.e.,diam(supp j;k) 2 janddiam(supp~ j;k) 2 j.c)Thesystemsarebiorthogonal,i.e.,( j;k;~ j;k0)L2(0;1)= k;k0,forallk;k02 j.d)Thesystems j,~ jareuniformlystable,i.e.,forallc:=(ck)k2 j Xk2 jck j;k L2(0;1) kck‘2( j) Xk2 jck~ j;k L2(0;1):e)Thefunctionsareregular,i.e., j;k2H (0;1),~ j;k2H~ (0;1),forsome ;~ 1,whereHs(0;1),s 0,denotestheusualSobolevspace.f)ThesystemsareexactoforderL,~L 1,respectively,i.e.,algebraicpolynomialsuptothedegreeL 1,~L 1arereproducedexactly:IPL 1(0;1) Sj,IP~L 1(0;1) ~Sj.g)Thesystem jful llsaJackson{typeinequality:infvj2Sjkv vjkL2(0;1) 2 sjkvkHs(0;1);v2Hs(0;1);0 s min(L; );andaBernstein{typeinequality:kvjkHs(0;1) 2jskvjkL2(0;1);vj2Sj;0 s :Similarinequalitiesholdfor~ jwiththeobviouschangesoftheparameters.h)ThereexistbiorthogonalcomplementspacesTjand~TjsuchthatSj+1=Sj Tj;Tj?~Sj;~Sj+1=~Sj ~Tj;~Tj?Sj:i)ThespacesTjand~Tjhavebases j=f j;h:h2rjg,~ j=f~ j;h:h2rjg,(withrj:= j+1n j=f j;1;:::; j;Mjg,0 j;1 j;Mj1)whicharebiorthogonal(inthesenseofc))anduniformlystable(inthesenseofd)).Thesebasisfunctionsarecalledbiorthogonalwavelets.j)Thecollectionsofthesefunctionsforallj j0formRieszbasesofL2(0;1)
本文标题:Numerical solution of elliptic problems by the wav
链接地址:https://www.777doc.com/doc-3337467 .html