您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > Extended Abstract
DRAFT:MinimumWeightConvexQuadrangulationofaConstrainedPointSetThomasFevensHenkMeijerDavidRappaportDepartmentofComputingandInformationScienceQueen’sUniversityatKingston,Kingston,OntarioK7L3N6Canada.Email:ffevensjhenkjdaverg@qucis.queensu.caSeptember5,1997ExtendedAbstractSummary:AconvexquadrangulationwithrespecttoapointsetSisaplanarsubdivi-sionwhoseverticesarethepointsofS,wheretheboundaryoftheunboundedouterfaceistheboundaryoftheconvexhullofS,andeveryboundedinteriorfaceisconvexandhasfourpointsfromSonitsboundary.AminimumweightconvexquadrangulationwithrespecttoSisaconvexquadrangulationofSsuchthatthesumoftheEuclideanlengthsoftheedgesofthesubdivisionisminimised.Inthisextendedabstract,wewillpresentapolynomialtimealgorithmtodeterminewhetherasetofpointsSadmitsaconvexquadrangulationifSisconstrainedtolieona xednumberofnestedconvexpolygons,wherethetimecomplexityispolynomialinthecardinalityofS.Thisalgorithmcanalsobeusedto ndaminimumweightconvexquadrangulationofthepointset.WeuseasimilarapproachtoconstructaconvexsubdivisionwithrespecttoSusingthreeorfourpointsfromSperface,andminimisingthetotalnumberoffaceswithintheboundaryoftheconvexhullofS.1IntroductionTherearemanyproblemsforwhichitisnecessaryto ndanumericalsolutionofacomplicatedsystemofdi erentialequations.To ndsuchanumericalsolution,the niteelementmethod[6][20]isoftenemployed.Withthismethod,thedomainoverwhichthesolutionissoughtisdividedintosmallpieces( niteelements)determinedbydatapointssampledfromthedomain.Thissubdivision,oftengeneratedautomaticallyorsemi-automatically,istermedamesh.Typically,themeshiscomprisedoftriangular niteelements,butforsomesituations,suchasforinterpolatingscattereddata[11][12]aswellasforsome niteelementmethodapplications[3][7],itispreferabletouse niteelementsthatarequadrangles(quadrilaterals)insteadoftriangles.SuchaquadrangulationwithrespecttoapointsetSisaplanarsubdivisionwhoseverticesarethepointsofS,wheretheboundaryoftheunboundedouterfaceistheboundaryoftheconvexhullofS,andeveryboundedinteriorfacehasfourpointsfromSonitsboundary.AconvexquadrangulationwithrespecttoapointsetSisaquadrangulationofSsuchthatallthequadranglesareconvex.Aminimumweight(minimum\ink)convexquadrangulationwithrespecttoapointsetisaconvexquadrangulationofSsuchthatthesumoftheEuclideanlengthsofthelinesegmentsofthequadrangulationisminimised.Inthisabstract,ourprimaryresultwillbeapolynomialtimealgorithmto ndaminimumweightconvexquadrangulation(MWCQ)ofaplanarpointsetconstrainedtowhatisknownasaconstantnumberofnestedconvexhulls.12PreliminariesBeforewecontinue,letusintroducesometerminologyusedinthisabstract.Mostofthegeometricterminologyisstandardanddetailscanbefoundin[15].LetE2denotetheEuclideanspaceintwodimensions.WeassumethatanygivenpointsetSisingeneralposition,i.e.,nothreepointsarecollinear.De nition2.1Let(x;y)denotetheclosedundirectedlinesegment,oredge,betweenverticesxandy.De ned(x;y)tobetheweightof(x;y).FortheMWCQalgorithm,thisweightwillbetheEuclideandistancebetweenxandy.De nition2.2AdomaininE2isconvexifforanytwopointsp1andp2inthedomain,(p1;p2)doesnotcrosstheboundaryofthedomain.De nition2.3ApolygonPistheclosedregionoftheplaneboundedbya nitecollectionoflinesegmentsformingasimple(notself-intersecting)closedcurve.Wewillusethenotation PtodenotetheboundaryofP.De nition2.4ConsiderasimplepolygonP.Considerapointx Pandapointyintheplane.Wesaythatxcanseey,oryisvisibletox,if(x;y) P.De nition2.5Givenasetofpoints,S,anemptypolygonisapolygonwithnopointsfromSinitsinterior.De nition2.6Astar-shapedpolygonPisanemptypolygonwherethereexistsatleastonepointx Psuchthatxcanseetheentireinteriorofthepolygon.De nition2.7Anorthogonalpolygonisapolygonwhoseedgesofitsboundaryareparalleltotwoorthogonalaxes.De nition2.8Givenasetofpoints,S,theconvexhullofS,denotedasCH(S),isde nedtobetheminimumareaconvexpolygonenclosingS.De nition2.9ConsiderasimplepolygonP.LetSbeapointsetintheplaneincludingtheverticesoftheboundaryofP.ThequadrangulationofPisaplanarsubdivisionwhoseverticesareS\Pandwhereeveryfaceinteriortothepolygonboundaryisboundedandisaquadrangle.ThequadrangulationofanemptypolygonwouldbeaspecialcasewhereS\PonlyincludestheverticesofP.23PreviousWorkThepossiblenumberofquadrangulationsforagivenemptypolygonPcanbeexponentialinthenumberofverticesontheboundaryofP[10],althoughanarbitrarysimpleemptypolygonmaynotevennecessarilyadmitaquadrangulation.Inoneoftheearlierquadrangulationresults,actuallymotivatedbyitsapplicationinlocatingn=4guardstocover(i.e.,watchover)theinteriorofanemptypolygonwithnvertices,SackandToussaint[18]showedthattheycouldpartitionarectilinearstar-shapedpolygonintoconvexquadranglesinO(n)time.Kahn,KlaweandKleitman[8]thengaveanexistentialproofthatarbitrarysimpleorthogonalemptypolygonscanbepartitionedintoconvexquadrangles.Theyalsoshowedthatanyorthogonalpolygonwithnverticesandhholescanbedecomposedinton=2+h 1convexquadrangles.Followinguponthis,Sack[17],SackandToussaint[19],andindependentlyLubiw[13]allgaveconstructiveproofsofKahn,KlaweandKleitman’sexistentialproof.ThetimecomplexityoftheiralgorithmswasO(nlogn).Also,Lubiwsh
本文标题:Extended Abstract
链接地址:https://www.777doc.com/doc-3340262 .html