您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 江西省2016年中考数学试题(含答案)
第1页(共18页)一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A.2B.C.0D.-2【答案】A.2.将不等式的解集表示在数轴上,正确的是().【答案】D.3.下列运算正确的是是().A.B.C.D.【答案】B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是().【答案】C.5.设是一元二次方程的两个根,则的值是().第2页(共18页)A.2B.1C.-2D.-1【答案】D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是()A.只有○2B.只有○3C.○2○3D.○1○2○3【答案】C.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-3+2=_______.【答案】-1.8.分解因式________.【答案】.9.如图所示,中,绕点A按顺时针方向旋转50°,得到,则∠的度数是________.xyy1y2lABOBCEFCABAC'DB'P第6题③②①第3页(共18页)第9题第10题第11题【答案】17°.10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为_______.【答案】50°.11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则______.【答案】4.12.如图,是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长...是_______.【答案】5,5,.如下图所示:PPPECDBAECDBAECDBA三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解方程组ECDBA第4页(共18页)【解析】由○1得:,代入○2得:,解得把代入○1得:,∴原方程组的解是.(2)如图,Rt中,∠ACB=90°,将Rt向下翻折,使点A与点C重合,折痕为DE,求证:DE∥BC.【解析】由折叠知:,∴∠∠,又点A与点C重合,∴∠,∴∠∠,∴∠,∵∠,∴∠,∴∠,∴DE∥BC.14.先化简,再求值:+)÷,其中.【解析】原式=+)=+)DECBA第5页(共18页)=-=把代入得:原式=.15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若【解析】(1)在Rt,∴∴∴点B的坐标是(0,3).(2)∵∴∴∴设,把(2,0),代入得:xyl2l1CBAO第6页(共18页)∴∴的解析式是.16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.项目家长人数乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解析】(1)如下图所示:项目家长人数6乙甲情感品质日常学习习惯养成健康安全475172320182420161284O第7页(共18页)(2)(4+6)÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长.(3)没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线.图2图1BABA【解析】如图所示:图1图2CHOBABA(1)∠BAC=45º;(2)OH是AB的垂直平分线.四、(本大题共4小题,每小题8分,共32分)第8页(共18页)18.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F是的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?说明理由;【解析】(1)如图1连接OC,∵CD是⊙O的切线,∴OC⊥CD∴∠OCD=90º,∴∠DCA=90º-∠OCA.又PE⊥AB,点D在EP的延长线上,∴∠DEA=90º,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC,∴∠OCA=∠OAC.∴∠DCA=∠DPC,∴DC=DP.(2)如图2四边形AOCF是菱形.图1ACACFEDAOBCPAC=CFAFFEDAOBCP第9页(共18页)连接CF、AF,∵F是的中点,∴∴AF=FC.∵∠BAC=30º,∴=60º,又AB是⊙O的直径,∴=120º,∴=60º,∴∠ACF=∠FAC=30º.∵OA=OC,∴∠OCA=∠BAC=30º,∴⊿OAC≌⊿FAC(ASA),∴AF=OA,∴AF=FC=OC=OA,∴四边形AOCF是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求的值.FEDAOBCPBCACB=CFAF第10页(共18页)图2图1xx•••第2节xx第1节图3【解析】(1)第5节的套管的长是34cm.(注:50-(5-1)×4)(2)(50+46+…+14)-9x=311∴320-9x=311,∴x=1∴x的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);○2两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”;○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.第11页(共18页)现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为.(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】(1).(2)如图:754654764765乙甲7654开始∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)(7,4)(7,5)(7,6)共12种.甲5[4567甲“最终点数”9101112第12页(共18页)乙5567467457456乙“最终点数”101112911129101291011获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平乙胜乙胜平∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18º不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090,com18º≈0.9511,可使用科学计算器)AOB第13页(共18页)【解析】(1)图1,作OC⊥AB,∵OA=OB,OC⊥AB,∴AC=BC,∠AOC=∠BOC=∠AOB=9°,在Rt⊿AOC中,sin∠AOC=,∴AC≈0.1564×10=1.564,∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm.(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,作AD⊥BC于点D;∵AC=AB,AD⊥BC,∴BD=CD,∠BAD=∠CAD=∠BAC,∵∠AOB=18°,OA=OB,AB=AC,∴∠BAC=18°,∴∠BAD=9°,在Rt⊿BAD中,sin∠BAD=,∴BD≈0.1564×3.128≈0.4892,∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm.图2CAOBDCABO第14页(共18页)五、(本大题共10分)22.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE'.【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为(用含n的式子表示).第15页(共18页)OP(E')图n图3(n=6)图2(n=5)图1(n=4)POF'N'E'D'C'B'NFEDCB(C)'D'F'B'(C)D(E)FBPOC'D'E'B'CDEBPOC'D'B'CDBAAAA【解析】(1)如图1∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°∴∠DAP=∠D'AO,∴⊿APD≌⊿AOD'(ASA)∴AP=AO,又∠OAP=60°,∴⊿AOP是等边三角形.(2)如右图,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°MNPOC'D'E'B'CDEBA第16页(共18页)∴∠EAP=∠E'AO,∴⊿APE≌⊿AOE'(ASA)∴∠OAE'=∠PAE.在Rt⊿AEM和Rt⊿ABN中,∴Rt⊿AEM≌Rt⊿ABN(AAS)∴∠EAM=∠BAN,AM=AN.在Rt⊿APM和Rt⊿AON中,∴Rt⊿APM≌Rt⊿AON(HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB(等量代换).(3)15°,24°(4)是(5)∠OAB=÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(1,0)作第17页(共18页)x轴的垂线,交抛物线于点A2,…;过点Bn(,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得直角三角形AnBnBn+1.(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);(3)在系列Rt⊿AnBnBn+1中,探究下列问题:○1当n为何值时,Rt⊿AnBnBn+
本文标题:江西省2016年中考数学试题(含答案)
链接地址:https://www.777doc.com/doc-3342584 .html