您好,欢迎访问三七文档
发电厂电气部分课程设计4×200MW电厂0目录摘要··························1绪论··························214×200MW火力发电厂电气主接线的确定··········31.1概述························31.2电气主接线设计的重要性···············31.3电气主接线的设计依据················31.3.1发电厂在电力系统中的地位和作用·········31.3.2负荷大小和重要性················41.4电气主接线的主要要求················42电气主接线设计····················52.1电厂规模······················52.2主接线的方案····················52.3方案的选择····················8附录·························11心得体会·······················11参考文献·······················13发电厂电气部分课程设计4×200MW电厂1摘要电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本文是对配有4台200MW汽轮发电机的大型火电厂一次电气部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的确定,材料分析,电气主接线的方案选择及其比较,最终确定主接线。发电厂电气部分课程设计4×200MW电厂2绪论由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。由于电源点与负荷中心多数处于不同地区,也无法大量储存,电能生产必须时刻保持与消费平衡。因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。电能是一种清洁的二次能源。由于电能不仅便于输送和分配,易于转换为其它的能源,而且便于控制、管理和调度,易于实现自动化。因此,电能已广泛应用于国民经济、社会生产和人民生活的各个方面。绝大多数电能都由电力系统中发电厂提供,电力工业已成为我国实现现代化的基础,得到迅猛发展。到2003年底,我国发电机装机容量达38450万千瓦,发电量达19080亿度,居世界第2位。工业用电量已占全部用电量的50~70%,是电力系统的最大电能用户,供配电系统的任务就是企业所需电能的供应和分配。电力系统的出现,使高效、无污染、使用方便、易于调控的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术革命。电力系统的规模和技术水准已成为一个国家经济发展水平的标志之一。我国的电力系统从50年代开始迅速发展。1991年底,到电力系统装机容量为14600万千瓦,年发电量为6750亿千瓦时,均居世界第四位。输电线路以220千伏、330千伏和500千伏为网络骨干,形成4个装机容量超过1500万千瓦的大区电力系统和9个超过百万千瓦的省电力系统,大区之间的联网工作也已开始。此外,1989年,台湾省建立了装机容量为1659万千瓦的电力系统。发电厂电气部分课程设计4×200MW电厂314×200MW火力发电厂电气主接线的确定1.1概述电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线的方案。发电厂的电气主接线是保证电力网安全可靠、经济运行的关键,是电气设备布置、选择、自动化水平和二次回路设计的原则和基础。1.2电气主接线设计的重要性首先,电气主接线图示电气运行人员进行各种操作和事故处理的重要依据,因此电气运行人员必须熟悉本厂电气主接线土,了解电路中各种电器设备的用途、性能及维护、检察项目和运行的步骤。其次,电气主接线表明了发电机、变压器、断路器和线路等电气设备的数量、规格、连接方式及可能的运行方式。电气主接线直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定。是发电厂电气部分投资大小的决定性因素。再次,由于电能生产的特点是:发电、变电、书电荷用电视在同一时刻完成的,所以主接线的好坏,直接关系着电力系统的安全、稳定、灵活和经济运行,也直接影响到工农业生产和人民生活。所以电气主接线的拟定是一个综合性的问题,必须在满足国家有关技术经济政策的前提下,力争使其技术先进,经济合理,安全可靠。1.3电气主接线的设计依据1.3.1发电厂在电力系统中的地位和作用电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。大型主力或电厂靠近煤矿或沿海、沿江,并接入300-500KV超高压系统;地区电厂靠近城镇,一般接入110-220KV系统,也有接入330KV系统;企业自备电厂则以本企业供电供热为主,并与地区110-220KV系统相连。中小型电厂常有发电厂电气部分课程设计4×200MW电厂4发电机电压馈线向附近供电。1.3.2负荷大小和重要性(1)对于一级负荷必须有两个独立电源供电,切当任何一个电源失去后,能保证对全部一级负荷不间断供电。(2)对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。(3)对于三级负荷一般只需一个电源供电。1.4电气主接线的主要要求电气主接线的设计原则是:根据发电厂在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性的要求。(1)可靠性:衡量可靠的标准,一般是根据主接线型式机主要设备操作的可能方式,按一定的规律计算出“不允许”事件发生的规律,停运的持续时间期望值等指标,对几种主接线型式中择优。所谓“不允许”事故,是指发生故障后果非常严重的事故,如全部电源津县停运、朱变压器停运,全场停电事故等。供电可靠性是电力生产和分配的首要要求,主接线首先应满足这个要求。(2)灵活性:是指在调度时,可以灵活的投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以极特殊运行方式下的系统电镀要求;在检修时,可以方便的停运断路器、母线及其继电保护设备,而不致影响电力网的运行和对用户的供电;在扩建时,可以容易的从初期接线扩建到最终接线,在不影响连接供电或停电时间最短的情况下,投入新机组、变压器或线路,并对一次和二次部分的改建工作量最少。在操作时间便、安全、不易发生误操作的“方便性”。(3)主接线应在满足供电可靠性、灵活性要求的前提下做到经济性。即:主接线应力求简单,以节省断路器、隔离开关、电流和电压互感器等一次设备,要是控制、保护不过于复杂,要能限制短路电流,以便于选择价廉的电气设备或轻型电器。做到投资省。合理的选择主变压器的种类(双绕组、三绕组或自耦变发电厂电气部分课程设计4×200MW电厂5等)容量、台数,避免两次变压而增加电能的损失。电器主接线选择时要为配电装置的布置创造条件,尽量使占地面积减少。2电气主接线设计本次的设计的主要内容是一个4*200MW活力发电厂的电气部分,即主接线部分。2.1电厂规模装机容量:装机4台,容量分别为4X200MW,UN=10.5KV机组年利用小时数:Tmax=6200h发电站所在地气侯条件:年最高气温+40℃,平均气温+25℃。厂用电率:8%,功率因数达到0.9。出线回数:a.10KV电压等级:电缆馈线10回,每回平均输送容量1.8MW。10KV最大负荷20MW,最小负荷16MW,功率因数cos=0.85,Tmax=5300h,为Ⅰ类、Ⅱ类负荷。b.110KV电压等级:架空出线6回,每回平均输送容量11MW。110KV最大负荷70MW,最小负荷60MW,功率因数cos=0.8,Tmax=5000h,为Ⅱ类负荷。c.220KV电压等级:架空线2回,220KV与无穷大系统连接,接受该发电厂的剩余功率。当取基准容量为100MV.A时,系统归算到220KV母线上的。2.2主接线的方案(1)方案一a.220KV电压等级的方案选择。由于220KV电压等级的电压馈线数目是2回,所以220KV电压等级的接线形式可以选择单母线接线形式。由于单母线接线本身的简单、经济、方便等基本优点,采用设备少、投资省、操作方便、便于扩建和采用成套配电设备装置,所以220KV电压等级的接线形式选择为单母线接线。b.110KV电压等级的方案选择。由于110KV电压等级的电压馈线数目是6回,所以在本方案中的可选择的接线10,气象条件:年最高温度40度,平均气温25度,气象条件一般,无特殊要求形式是单母线分段接线。单母线的优点如下:①母线经断路器分段后,对重要发电厂电气部分课程设计4×200MW电厂6用户可以从不同段引出两个回路,有两个电源供电;②一段母线故障(或检修)时,仅停故障(或检修)段工作,非故障段仍可继续工作。c.10KV电压等级的方案选择。由于10KV电压等级的电压馈线数目是10回,所以在本方案中的可选择的接线形式是单母线分段接线。用断路器把母线分段后,对重要的用户可以从不同的段引出两条回路,有两个电源供电;当一段母线发生故障,分段断路器会自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。所以可以将主接线形式表示如图2-1所示。图2-1方案一接线图(2)方案二a.220KV电压等级的方案选择。由于220KV电压等级的电压馈线数目是2回,所以220KV电压等级的接线形式可以选择单母线接线形式。由于单母线接线本身的简单、经济、方便等基本优点,采用设备少、投资省、操作方便、便于扩建和采用成套配电设备装置,所以220KV电压等级的接线形式选择为单母线接线。b.110KV电压等级的方案选择。由于110KV电压等级的电压馈线数目是6回,所以在本方案中的可选择的接线形式是双母线接线形式。由于双母线接线的可靠性和灵活性高,它可以轮流检修母线,而不中断对用户的供电;当检修任意回路的母线隔离开关时,只需断开该回路;工作母线故障时,可将全部回路转移到备用母线上,从而使用户迅速恢发电厂电气部分课程设计4×200MW电厂7复供电;可用母联断路器代替任意回路需要检修的断路器,在种情况下,只需短时停电;在个别回路需要单独进行试验时,可将该回路分离出来,并单独接至备用母线上。双母线接线形式正好克服了单母线分段接线形式的缺点,所以在大、中型发电厂中这种接线形式被广泛应用。c.10KV电压等级的方案选择。在方案二中的10KV电压等级的接线形式仍然选择单母线分段接线形式。因为在进行主接线的设计中,必须时时刻刻考虑到可靠性、灵活性和经济行动要求。图2-2方案二接线图(3)方案三方案三的电气主接线形式在220KV电压等级的方案选择和110KV电压等级的方案选择基本相同,在这里就不再作详细的介绍。唯一不同的是在10KV电压等级上将原来方案一的220KV电压等级两个上的发电机组全部放置到了10KV电压等级上。发电厂电气部分课程设计4×200MW电厂8图2-3方
本文标题:4×200MW电厂
链接地址:https://www.777doc.com/doc-3352677 .html