您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 第2章 信号检测与转换(传感器)
信号检测与转换技术(传感器及应用)绪论和第2章传感与检测技术的理论基础IT技术信息采集、信息传输、信息处理信息产业三大支柱传感器技术、通信技术、计算机技术什么是传感器?形形色色的传感器传感器的地位和作用绪论和第2章传感与检测技术的理论基础课程安排课程安排讲课30学时习题课4学时实验课8学时总计42学时绪论和第2章传感与检测技术的理论基础2.1测量概论2.2测量数据的估计和处理第2章检测技术的理论基础绪论和第2章传感与检测技术的理论基础2.1.1测量测量是以确定被测量的值或获取测量结果为目的的一系列操作。测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。nux或uxn式中:x——被测量值u——标准量,即测量单位n——比值(纯数),含有测量误差绪论和第2章传感与检测技术的理论基础2.1.2测量方法根据获得测量值的方法分为直接测量:电流表测电流、弹簧秤称称重量间接测量:测水塔的水量、曹冲称象组合测量:若干个被测量及测量量的情况根据测量方式分为偏差式测量:用仪表指针的位移(即偏差)决定被测量的量值。模拟电流/压表、体重秤等。零位式测量:指零仪表指零时,被测量与已知标准量相等。天平、电位差计等。微差式测量:将被测量与已知的标准量相比较,取得差值后,再用偏差法测得此差值。游标卡尺等。绪论和第2章传感与检测技术的理论基础2.1.2测量方法根据测量条件分为等精度测量:用相同仪表与测量方法对同一被测量进行多次重复测量不等精度测量:用不同精度的仪表或不同的测量方法,或在环境条件相差很大时对同一被测量进行多次重复测量根据被测量变化的快慢分为静态测量动态测量绪论和第2章传感与检测技术的理论基础2.1.3测量误差测量误差是测得值减去被测量的真值。误差的表示方法绝对误差相对误差引用误差基本误差附加误差测量误差的性质随机误差系统误差粗大误差绪论和第2章传感与检测技术的理论基础误差的表示方法(1)(1)绝对误差绝对误差可用下式定义:Δ=x-L式中:Δ——绝对误差;x——测量值;L——真值。采用绝对误差表示测量误差,不能很好说明测量质量的好坏。例如,在温度测量时,绝对误差Δ=1℃,对体温测量来说是不允许的,而对测量钢水温度来说却是一个极好的测量结果。绪论和第2章传感与检测技术的理论基础误差的表示方法(2)(2)相对误差相对误差可用下式定义:式中:δ——相对误差,一般用百分数给出;Δ——绝对误差;L——真值。标称相对误差:%100L%100x绪论和第2章传感与检测技术的理论基础(3)引用误差引用误差可用下式定义:引用误差是仪表中通用的一种误差表示方法。(4)基本误差仪表在规定的标准条件下所具有的误差。(5)附加误差仪表的使用条件偏离额定条件下出现的误差。测量上限-测量下限maxminmaxmaxxx误差的表示方法(3)绪论和第2章传感与检测技术的理论基础测量误差的性质(1)(1)随机误差对同一被测量进行多次重复测量时,绝对值和符号不可预知地随机变化,但就误差的总体而言,具有一定的统计规律性的误差称为随机误差。引起的原因?(2)系统误差对同一被测量进行多次重复测量时,如果误差按照一定的规律出现,则把这种误差称为系统误差。例如,标准量值的不准确及仪表刻度的不准确而引起的误差。引起的原因?(3)粗大误差明显偏离测量结果的误差。引起的原因?绪论和第2章传感与检测技术的理论基础测量误差的性质(2)60kg50kg0kg系统误差随机误差粗大误差绪论和第2章传感与检测技术的理论基础例1-1某电压表的精度等级S为1.5级,试算出它在0V~100V量程的最大绝对误差。解:电压表的量程是:xm=100V-0V=100V∵精度等级S=1.5即引用误差为:γ=±1.5%∴可求得最大绝对误差:Δm=γxm=100V×(±1.5%)=±1.5V故:该电压表在0V~100V量程的最大绝对误差是±1.5V。绪论和第2章传感与检测技术的理论基础例1-2某1.0级电流表,满度值xm=100uA,求测量值分别为x1=100uA,x2=80uA,x3=20uA时的绝对误差和示值相对误差。解:∵精度等级S=1.0即引用误差为:γ=±1.0%∴可求得最大绝对误差:Δm=γxm=100uA×(±1.0%)=±1.0uA依据误差的整量化原则:认为仪器在同一量程各示值处的绝对误差是常数,且等于Δm。(注意:1.通常,测量仪器在同一量程不同示值处的绝对误差实际上未必处处相等,但对使用者来讲,在没有修正值可以利用的情况下,只能按最坏情况处理,于是就有了误差的整量化处理原则。2.因此,为减小测量中的示值误差,在进行量程选择时应尽可能使示值接近满度值,一般示值不小于满度值的2/3。)故:三个测量值处的绝对误差分别为:Δx1=Δx2=Δx3=Δm=±1.0uA三个测量值处的示值(标称)相对误差分别为:%5%100201%100%25.1%100801%100%1%1001001%100332211321AAxxAAxxAAxxxxx绪论和第2章传感与检测技术的理论基础例1-3要测量100℃的温度,现有0.5级、测量范围0~300℃和1.0级、测量范围0~100℃的两种温度计,试分析各自产生的示值误差。问选用哪一个温度计更合适?解:①对0.5级温度计,可能产生的最大绝对值误差为:℃℃5.1300%5.0111mmmxx按照误差整量化原则,认为该量程内的绝对误差为:℃5.111mxx所以示值相对误差为:%5.1%1001005.1%100111℃℃xxx②对1.0级温度计,可能产生的最大绝对值误差为:℃℃0.1100%0.1222mmmxx按照误差整量化原则,认为该量程内的绝对误差为:℃0.122mxx所以示值相对误差为:%0.1%1001000.1%100222℃℃xxx③结论:用1.0级小量程的温度计测量所产生的示值相对误差反而比选用0.5级的较大量程的温度计测量所产生的示值相对误差小,因此选用1.0级小量程的温度计更合适。绪论和第2章传感与检测技术的理论基础1.2测量数据的估计和处理1.2.1随机误差的统计处理1.2.2系统误差的通用处理方法1.2.3粗大误差1.2.4测量数据处理中的几个问题绪论和第2章传感与检测技术的理论基础随机误差的统计处理正态分布随机误差具有以下特征:①绝对值相等的正误差与负误差出现的次数大致相等——对称性。②在一定测量条件下的有限测量值中,其随机误差的绝对值不会超过一定的界限——有界性。③绝对值小的误差出现的次数比绝对值大的误差出现的次数多——单峰性④对同一量值进行多次测量,其误差的算术平均值随着测量次数n的增加趋向于零——抵偿性。(凡是具有抵偿性的误差原则上可以按随机误差来处理)这种误差的特征符合正态分布绪论和第2章传感与检测技术的理论基础随机误差的统计处理随机误差的数字特征算术平均值。对被测量进行等精度的n次测量,,得n个测量值x1,x2,…,xn,,它们的算术平均值为:标准偏差简称标准差,又称均方根误差,刻划总体的分散程度,可以描述测量数据和测量结果的精度。niinxnxxxnx1211)(1nnLxniinii1212)(绪论和第2章传感与检测技术的理论基础随机误差的统计处理用测量的均值代替真值:有限次测量中,算术平均值不可能等于真值,即也有偏差,的均方根偏差:11)(1221nvnxxniniisiixixnsx绪论和第2章传感与检测技术的理论基础正态分布随机误差的概率计算几个概念:置信概率:置信系数:k显著度:测量结果可表示为(计算得到的真值和真值的均方根偏差):dvekvkPPkkv22221)(P1xxx3)9973.0(Pk0.674511.9622.5834Pa0.50.68270.950.95450.990.99730.99994几个典型的k值及其相应的概率绪论和第2章传感与检测技术的理论基础正态分布随机误差的概率计算kk当k=±1时,Pa=0.6827,即测量结果中随机误差出现在-σ~+σ范围内的概率为68.27%,而|v|σ的概率为31.73%。出现在-3σ~+3σ范围内的概率是99.73%,因此可以认为绝对值大于3σ的误差是不可能出现的,通常把这个误差称为极限误差绪论和第2章传感与检测技术的理论基础例题例1-1对某一温度进行10次精密测量,测量数据如表所示,设这些测得值已消除系统误差和粗大误差,求测量结果。序号测量值xi残余误差vivi2185.710.030.0009285.63-0.050.0025385.65-0.030.0009485.710.030.0009585.690.010.0001685.690.010.0001785.700.020.0004885.6800985.66-0.020.00041085.680068.85x0iv0062.02iv026.01100062.0s01.0008.010206.0x%73.99,03.068.853%27.68,01.068.85PxxPxxxx或 绪论和第2章传感与检测技术的理论基础不等精度直接测量的权与误差在不等精度测量时,对同一被测量进行m组测量,得到m组测量列(进行多次测量的一组数据称为一测量列)的测量结果及其误差,它们不能同等看待。精度高的测量列具有较高的可靠性,将这种可靠性的大小称为“权”。“权”可理解为各组测量结果相对的可信赖程度。测量次数多,测量方法完善,测量仪表精度高,测量的环境条件好,测量人员的水平高,则测量结果可靠,其权也大。权是相比较而存在的。权用符号p表示,有两种计算方法:①用各组测量列的测量次数n的比值表示,并取测量次数较小的测量列的权为1,则有p1∶p2∶…∶pm=n1∶n2∶…∶nm②用各组测量列的误差平方的倒数的比值表示,并取误差较大的测量列的权为1,则有p1∶p2∶…∶pm=21)1(∶22)1(∶…∶2)1(m绪论和第2章传感与检测技术的理论基础不等精度直接测量的权与误差加权算术平均值加权的标准误差pxmiimiiipppxx11pxmiimiiixpmvpp112)1(绪论和第2章传感与检测技术的理论基础系统误差的通用处理方法系统误差产生的原因①传感器、仪表不准确(刻度不准、放大关系不准确)②测量方法不完善(如仪表内阻未考虑)③安装不当④环境不合⑤操作不当系统误差的判别①实验对比法,例如一台测量仪表本身存在固定的系统误差,即使进行多次测量也不能发现,只有用更高一级精度的测量仪表测量时,才能发现这台测量仪表的系统误差。②残余误差观察法(绘出先后次序排列的残差)③准则检验绪论和第2章传感与检测技术的理论基础系统误差的通用处理方法绪论和第2章传感与检测技术的理论基础③准则检验法马利科夫判据是将残余误差前后各半分两组,若“Σvi前”与“Σvi后”之差明显不为零,则可能含有线性系统误差。阿贝检验法则检查残余误差是否偏离正态分布,若偏离,则可能存在变化的系统误差。将测量值的残余误差按测量顺序排列,且设A=v12+v22+…+vn2,B=(v1-v2)2+(v2-v3)2+…+(vn-1-vn)2+(vn-v1)2。若则可能含有变化的系统误差。系统误差的通用处理方法nAB112绪论和第2章传感与检测技术的理论基础系统误差的消除在测量结果中进行修正已知系统误差,变值系统误差,未知系统误差消除系统误差的根源根源?在测量系统中采用补偿措施实时反馈修正
本文标题:第2章 信号检测与转换(传感器)
链接地址:https://www.777doc.com/doc-3357019 .html