您好,欢迎访问三七文档
第4章磨损1第四章磨损理论及其控制主讲:高诚辉第4章磨损2内容目录一、概述二、磨损基本形式及其影响因素三、磨损的转化与复合四、磨损理论与磨损计算第4章磨损3一、概述1.磨损研究的重要性2.磨损研究的进展3.磨损的定义4.磨损的分类5.磨损的评定6.磨损的动态过程第4章磨损41.磨损研究的重要性两个相互接触相对运动的表面发生摩擦,就有磨损发生。各种机器都是由许多零件组成的,在其相互活动接连的地方(如齿轮与齿轮、轴与轴承、活塞环与缸套之间)以及机器在工作环境中和外界介质接触时(如犁铧耕地、采煤机开采煤矿等),总不免要产生摩擦与磨损。据不完全统计,能源的1/3到1/2消耗于摩擦与磨损;约80%的机器零件失效是由于磨损引起的。所以磨损是机器最常见、最大量的一种失效方式。据调查,联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损直接造成的损失相当,如果再加上后续工序的影响,其经济损失还需加上10%一20%。第4章磨损51.磨损研究的重要性与摩擦相比,磨损要复杂得多。直到目前磨损的机理还不十分清楚,也没有一条简明的定量定律。对大多数机器来说,磨损比摩擦显得更为重要,实际上人们对磨损的理解远远不如摩擦。对机器磨损的预测能力也很差。对于大多数不同系统的材料,在空气中的摩擦系数大小相差不超过20倍,而磨损率之差却很大,如聚乙烯对钢的磨损和钢对钢的磨损之比可相差105倍。磨损似乎比摩擦具有更大的复杂性和敏感性。在具体的工作条件下,影响因素是十分复杂的,它包括工作条件、环境因素、介质因素和润滑条件以及零件材料的成分、组织和工作表面的物理、化学;机械性能等,了解影响因素有利于实现对磨损的控制。第4章磨损62.磨损研究的进展磨损的研究工作开展得较迟,本世纪50年代初期在工业发展国家开始研究“粘着磨损”理论,探讨磨损机理。1953年美国的J.F.Archard提出了简单的磨损计算公式,1957年苏联的克拉盖尔斯基提出了固体疲劳理论和计算方法,1973年美国的N.P.Suh提出了磨损剥层理论。20世纪60年代后,由于电子显微镜、光谱仪、能谱仪、俄歇谱仪以及电子衍射仪等测试仪器和放射性同位素示踪技术、铁谱技术等大量和综合的应用,使得磨损研究在磨损力学、机理、失效分析、监测及维修等方面有了较快的发展。把磨损试验机直接装在电子显微镜内进行观察和电视录像,了解磨损的动态过程;研究磨损的表面,次表面及磨屑形貌、成分、组织和性能的变化,以搞清磨损机理,分析和监测磨损过程,从而寻求提高机器寿命的可能途径。第4章磨损73.磨损的定义磨损是相互接触的物体在相对运动时,表层材料不断发生损耗的过程或者产生残余变形的现象。定义说明①磨损并不局限于机械作用,由于伴同化学作用而产生的腐蚀磨损;由于界面放电作用而引起物质转移的电火花磨损;以及由于伴同热效应而造成的热磨损等现象都在磨损的范围之内;第4章磨损8定义说明②定义强调磨损是相对运动中所产生的现象,因而,橡胶表面老化、材料腐蚀等非相对运动中的现象不属于磨损研究的范畴;③磨损发生在物体工作表面材料上,其它非界面材料的损失或破坏,不包括在磨损范围之内;④磨损是不断损失或破坏的现象,损失包括直接耗失材料和材料的转移(材料从一个表面转移到另一个表面上去),破坏包括产生残余变形,失去表面精度和光泽等。不断损失或破坏则说明磨损过程是连续的、有规律的,而不是偶然的几次。第4章磨损94.磨损的分类(1)按表面作用分类苏联学者Хрушов(1953年)根据摩擦表面的作用将磨损分为以下三大类,认为磨粒磨损是最普遍的磨损形式:机械类:由摩擦表面的机械作用产生的磨损,包括磨粒磨损、表面塑性变形、脆性剥落等。分子—机械类:由于分子力作用形成表面粘着结点,再经机械作用使粘着结点剪切所产生的磨损,即粘着磨损。腐蚀—机械类:这类磨损是由介质的化学作用引起表面腐蚀,而摩擦中的机械作用加速腐蚀过程,它包括氧化磨损和化学腐蚀磨损。第4章磨损10(2)按过程分类克拉盖里斯基(1962年)提出的磨损分类方法将磨损划分为三个过程,根据每一过程的分类来说明相互关系,如图所示。①表面的相互作用两个摩擦表面的相互作用可以是机械的或分子的两类,机械作用包括弹性变形、塑性变形和犁沟效应,它可以是由两个表面的粗糙峰直接啮合引起的,也可以是三体摩擦中夹在两表面间的外界磨粒造成的;表面分子作用包括相互吸引和粘着效应两种,前者作用力小而后者的作用力较大。第4章磨损11②表面层的变化表面层的塑性变形使金属冷作硬化而变脆;如果表面经受反复的弹性变形,则将产生疲劳破坏。摩擦热引起的表面接触高温可以使表层金属退火软化,接触以后的急剧冷却将导致再结晶或固溶体分解。外界环境的影响主要是介质在表层中的扩散,包括氧化和其它化学腐蚀作用,因而改变了金属表面层的组织结构。在摩擦表面的相互作用下,表面层将发生机械的、组织结构的、物理的和化学的变化,这是由于表面变形、摩擦温度和环境介质等因素的影响所造成的。第4章磨损12③表面层的破坏形式擦伤:由于犁沟作用在摩擦表面产生沿摩擦方向的沟痕和屑粒;点蚀:在接触应力反复作用下,使金属疲劳破坏而形成的表面凹坑;剥落:金属表面由于变形强化而变脆,在载荷作用下产生微裂纹随后剥落;胶合:由粘着效应形成的表面粘结点具有较高的连接强度,使剪切破坏发生在表层内一定深度,因而导致严重磨损;微观磨损:以上各种表层破坏的微观形式。第4章磨损13(3)按磨损机理分类根据近年来的研究,人们普遍认为按照不同的磨损机理来分类是比较恰当的,通常将磨损划分为四个基本类型:磨粒磨损粘着磨损表面疲劳磨损腐蚀磨损虽然这种分类还不十分完善,但它概括了各种常见的磨损形式。例如:侵蚀磨损是表面和含有固体颗粒的液体相摩擦而形成的磨损,它可以归入磨粒磨损。微动磨损的主要原因是接触表面的氧化作用,可以将它归纳在腐蚀磨损之内。第4章磨损14(3)按磨损机理分类还应当指出:在实际的磨损现象中,通常是几种形式的磨损同时存在,而且一种磨损发生后住住诱发其它形式的磨损。例如疲劳磨损的磨屑会导致磨粒磨损,而磨粒磨损所形成的新净表面又将引起腐蚀或粘着磨损微动磨损就是一种典型的复合磨损。在微动磨损过程中,可能出现粘着磨损、氧化磨损、磨粒磨损和疲劳磨损等多种磨损形式.随着工况条件的变化,不同形式磨损的主次不同.第4章磨损155.磨损的评定磨损时零件表面的损坏是材料表面单个微观体积损坏的总和。目前对磨损评定方法还没有统一的标准。这里主要介绍三种方法:磨损量、耐磨性和磨损比。(1)磨损量评定材料磨损的三个基本磨损量是长度磨损量Wl、体积磨损量Wv和重量磨损量Ww。长度磨损量是指磨损过程中零件表面尺寸的改变量,这在实际设备的磨损监测中经常使用。体积磨损量和重量磨损量是指磨损过程中零件或试样的体积或重量的改变量。在所有的情况下,磨损都是时间的函数,因此,用磨损率Wt'来表示时间的特性。其它指标还有磨损强度W'(单位摩擦距离的磨损量,有人也把它称为磨损率),和磨损速度WT'(是指机器完成一单位工作量的磨损量)。第4章磨损16(2)耐磨性材料的耐磨性是指在一定工作条件下材料耐磨损的特性。材料耐磨性分为相对耐磨性和绝对耐磨性两种。材料的相对耐磨性ε是指两种材料A与B在相同的外部条件下磨损量的比值,其中材料之一的A是标准(或参考)试样。εA=WA/WB磨损量WA和WB一般用体积磨损量,特殊情况下可使用其它磨损量。耐磨性通常也用绝对指标W-1或W´-1表示,即用磨损量或磨损率的倒数表示。W-1=1/W,W´-1=1/W´耐磨性使用最多的是体积磨损量的倒数,也可用体积磨损率、体积磨损强度或体积磨损速度的倒数表示。绝对耐磨性和相对耐磨性的关系是εA=WA×W-1第4章磨损17(3)磨损比冲蚀磨损过程中常用磨损比(也有称磨损率)来度量磨损。它必须在稳态磨损过程中测量,在其它磨损阶段中所测量的磨损比将有较大的差别。不论是磨损量、耐磨性和磨损比,它们都是在一定实验条件或工况下的相对指标,不同实验条件或工况下的数据是不可比较的。)料量(造成该磨损量所用的磨)或μ材料的冲蚀磨损量(=磨损比gmg3第4章磨损186.磨损的动态过程在摩擦磨损过程中,摩擦表面及表层的形貌、结构与性能发生变化,反过来也使摩擦副的接触特性、摩擦和磨损特性发生变化。金属的摩擦磨损是一动态过程,随时间或磨程而变化。大多数金属的磨损量与运转时间(磨程)的典型关系如图所示。这里磨损量以零件的体积或重量损失,也可按沿摩擦面垂直方向的尺寸减少量(线磨损)来衡量。零件的正常磨损过程大致可分为三个阶段。各阶段长短、磨损率dW/dt或dW/dl的大小将随零件或试样摩擦副表面的粗糙度,环境气氛与温度,载荷大小及摩擦速度等因素的不同而不同。第4章磨损19(1)跑合(磨合)阶段在载荷作用下,摩擦表面上的微凸体的形状发生变化,真实接触面积逐渐加大,直至相对稳定。此时,摩擦表层发生塑性变形和加工硬化。磨损率初始很大随后逐渐减小至进入稳定。跑合对于许多机器的摩擦副是非常重要的,通过跑合改变原机械零件加工表面的形态,进入稳定的工作运转状态。跑合过程的特点是摩擦表面有较大的磨损并发热,表面的几何形貌及表面和表层的物理、力学性能发生变化。有时还会形成某种表面膜(氧化膜、粘着转移膜等)。第4章磨损20(1)跑合(磨合)阶段各种滑动摩擦副经跑合后,会得到一相应于给定摩擦状态下稳定的表面粗糙度,其与初始表面粗糙度无关。跑合是摩擦副的自适应过程,在很多情况下可认为是一种有益的磨损过程。为了达到有益的效果,对磨合过程的工作参数也应进行合理的选择。否则在某些情况下也会出现摩擦副的早期严重磨损至使零件报废。提高磨合性能的措施良好的磨合性能表现为磨合时间短,磨合磨损量小,以及磨合后的表面耐磨性高。为提高磨合性能一般可采取以下措施:第4章磨损21选用合理的磨合规范新机器开始工作时载荷不可过大,否则将严量损伤表面,造成早期磨损失效。合理的磨合规范应当是逐步地增加载荷和摩擦速度,使表面品质得到相应改善,而磨合最后阶段的工作条件要接近使用工况。机器磨合以后,应将带有磨屑的润滑油更换方可投入正式使用。采用合适的材料配对摩擦副的磨合性能应是配对材料的组合性质。磨合性能良好的材料不仅是本身易于磨合,而且又能够对互配件的磨合起促进作用。第4章磨损22采用合适的材料配对以滑动轴承材料为例。通常轴颈材料为钢,轴承材料采用巴氏合金时,磨合性能较好,因为巴氏合金塑性好本身易于磨合,而组织中又合有SnSb硬颗粒对轴颈表面起磨合作用。铅青铜整个组织质地较软,本身容易磨合,但对轴颈的磨合作用不大,故磨合时间较长。而铁铝青铜中含有FeAl3颗粒,硬度很高,因而本身难以磨合又容易伤轴,与它相配的轴颈表面必须淬火硬化。为了改善材料本身的磨合性能,可以在表面镀一薄层塑性金属,例如铸铁活塞环表面镀锡。如果要加速配对表面的磨合过程,有时在摩擦表面间加入适当的磨料,但是应当选择恰当。第4章磨损23选择适当的润滑油和添加剂粘度较低的润滑油对于提高磨合性能有很大作用。磨合后的耐磨性取决于表面品质,而润滑油性质对磨合表面有显著影响。观察采用不同润滑油时磨合前后摩擦表面的形貌发现:随着润滑油粘度增加,磨合过程中粘着磨损所形成的擦痕也较深和较宽,使表面耐磨性降低。而低粘度的润滑油导热性好,容易维持表面吸附膜,磨合过程中粘着磨损较轻,使表面品质得到改善。如果在磨合用润滑油中加入适当的油性添加剂,一方面可以加速磨合过程,另一方面由于加强了吸附膜可以避免严重的粘着磨损痕迹,因而提高了表面品质。第4章磨损24控制制造精度和表面粗糙度显然,提高摩擦副表面的制造和装配精度将显著地减少磨合阶段的磨损量。而表面粗糙度的选择应根据磨损工况条件来确定。Хрушов(1946年)研究轴颈与轴承表面的磨合指出,不同加工方法的表面磨合后的粗糙度相同,但磨合时间不同。许多实验结果都证明:磨合结束后形成的表面粗糙度与机械加工后所得到的原始粗糙度大小无关,而取决于磨损工况条件,如摩擦副材料、载荷、滑动
本文标题:摩擦学原理第4章
链接地址:https://www.777doc.com/doc-3383299 .html