您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 概率与统计专题训练(文科)答案
11概率与统计专题训练一、选择填空1.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.2.某公司对下属员工在龙年春节期间收到的祝福短信数量进行了统计,得到了如下的直方图,如果该公司共有员工200人,则收到125条以上的大约有人.数值频率/组距1451251058565452550.0090.0120.01050.00750.0060.0033.某高中校三个年级人数见下表:年级高一高二高三人数300300400通过分层抽样从中抽取40人进行问卷调查,现在从答卷中随机抽取一张,恰好是高三学生的答卷的概率是(A)101(B)401(C)32(D)52124.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若[5.0,5.4]内的学生人数是2,则根据图中数据可得被抽查的学生总数是____;样本数据在[3.8,4.2)内的频率是______.5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为.其中平均数为;众数为;中位数为。6.右图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为1x和2x,标准差依次为1s和2s,那么()(注:标准差222121[()()()]nsxxxxxxn,其中x为12,,,nxxx的平均数)(A)12xx,12ss(B)12xx,12ss(C)12xx,12ss(D)12xx,12ss137.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为()(A)52(B)107(C)54(D)1098.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲乙988177996102256799532030237104根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的的中位数大于乙运动员得分的的中位数C.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定9.某校共有学生2000名,各年级男、女学生人数如下表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校学生中抽取64人,则应在三年级抽取的学生人数为()一年级二年级三年级女生385ab男生375360c(A)24(B)18(C)16(D)1210.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为;若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为.甲89980123379乙1411.在区间9,0上随机取一实数x,则该实数x满足不等式21log2x的概率为.12.已知向量(,1)xa,(3,)yb,其中x随机选自集合{1,1,3},y随机选自集合{1,3},那么ab的概率是____.13.在长度为1的线段AB上随机的选取一点P,则得到21||PA的概率是.14.在面积为1的正方形ABCD内部随机取一点P,则PAB的面积大于等于14的概率______.15.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为()(A)7.68(B)8.68(C)16.32(D)17.3216.从集合{1,1,2}A中随机选取一个数记为k,从集合{2,1,2}B中随机选取一个数记为b,则直线ykxb不经过第三象限的概率为()A.29B.13C.49D.5917.记集合22{(,)4}Axyxy和集合{(,)|20,0,0}Bxyxyxy表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为()(A)2(B)(C)4(D)相关人员数抽取人数公务员32x教师48y自由职业者6441518.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5的概率为____.19.投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为正实验,若第二次面向上的点数小于第一次面向上的点数我们称其为负实验,若两次面向上的点数相等我们称其为无效。那么一个人投掷该骰子两次后出现无效的概率是()A.361B.121C.61D.2120.设集合{12}{123}AB,,,,,分别从集合A和B中随机取一个数a和b,确定平面上的一个点()Pab,,记“点()Pab,落在直线xyn上”为事件(25)nCnnN≤≤,,若事件nC的概率最大,则n的所有可能值为()A.3B.4C.2和5D.3和4二、解答题1.某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.(Ⅰ)求研究性学习小组的人数;(Ⅱ)规划在研究性学习的中、后期各安排1次交流活动,每次随机抽取小组中1名同学发言.求2次发言的学生恰好来自不同班级的概率.2.甲、乙两名考生在填报志愿的时候都选中了A、B、C、D四所需要面试的院校,但是它们的面试安排在同一时间了。因此甲、乙只能在这四所院校中选择一个做志愿,假设每个院校被选择的机率相等,试求:(I)甲乙选择同一所院校的概率;16(II)院校A、B至少有一所被选择的概率;(III)院校A没有被选择的概率.3.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示:(Ⅰ)下表是年龄的频数分布表,求正整数,ab的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.174.某地区农科所为了选择更适应本地区种植的棉花品种,在该地区选择了5块土地,每块土地平均分成面积相等的两部分,分别种植甲、乙两个品种的棉花,收获时测得棉花的亩产量如下图所示:(Ⅰ)请问甲、乙两种棉花哪种亩产量更稳定,并说明理由;(Ⅱ)求从种植甲种棉花的5块土地中任选2块土地,这两块土地的亩产量均超过种植甲种棉花的5块土地的总平均亩产量的概率.5.某中学高三(1)班有男同学30名,女同学10名,老师按照分层抽样的方法组建了一个4人的校本教材自学实验小组.(Ⅰ)求小组中男、女同学的人数;(Ⅱ)从这个小组中先后选出2名同学进行测试,求选出的2名同学中恰有一名女同学的概率.014387255511109乙甲186.我区高三期末统一测试中某校的数学成绩分组统计如下表:(Ⅰ)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(Ⅱ)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.7.某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以分组频数频率(0,30]30.03(30,60]30.03(60,90]370.37(90,120]mn(120,150]150.15合计MN0.0010.0020.0030.0040.0050.0060.0070.0080.0090.0100.0110.0120.0130.0140.0150.016分数频率/组距30609012015019计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少%75的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区”.已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;(Ⅱ)假定选择的“非低碳小区”为小区A,调查显示其“低碳族”的比例为21,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区A是否达到“低碳小区”的标准?O月排放量(百千克/户户)频率组距0.460.230.100.0712345图2O月排放量(百千克/户户)频率组距0.300.250.200.150.0512345图160.148.对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统计数据如下:(I)求该校教师在教学中不经常使用信息技术实施教学的概率;(Ⅱ)在教龄10年以下,且经常使用信息技术实施教学的教师中任选2人,其中恰有一人教龄110在5年以下的概率是多少?【答案】来[来源:学科网ZXXK]9.某校为了解初高中学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了100名学生,相关的数据如下表所示:数学语文[来源:学+科+网]总计初中401858高中152742总计5545100(Ⅰ)用分层抽样的方法从喜欢语文的学生中随机抽取5名,高中学生应该抽取几名?(Ⅱ)在(Ⅰ)中抽取的5名学生中任取2名,求恰有1名初中学生的概率.10.高三年级进行模拟考试,某班参加考试的40名同学的成绩统计如下:分数段(70,90)[90,100)[100,120)[120,150]人数5a15b规定分数在90分及以上为及格,120分及以上为优秀,成绩高于85分低于90分的同学为希望生.已知该班希望生有2名.(Ⅰ)从该班所有学生中任选一名,求其成绩及格的概率;(Ⅱ)当a=11时,从该班所有学生中任选一名,求其成绩优秀的概率;(Ⅲ)从分数在(70,90)的5名学生中,任选2名同学参加辅导,求其中恰有1名希望生的概率.11111.对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,Mp及图中a的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.12.为预防11HN病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A组B组C组疫苗有效673xy疫苗无效7790z已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是33.0.分组频数频率[10,15)100.25[15,20)24n[20,25)mp[25,30)20.05合计M1频率/组距15252010030次数a112(Ⅰ)求x的值;(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?(Ⅲ)已知465y,30z,求不能通过测试的概率.13.某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:环数78910命中次数2783(Ⅰ)求此运动员射击的环数的平均数;(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m次、n次
本文标题:概率与统计专题训练(文科)答案
链接地址:https://www.777doc.com/doc-3384772 .html