您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 18.1.2平行四边形的判定第一课时
(第一课时)2015.04.8有两组对边分别平行的四边形叫做平行四边形ABCD四边形ABCD如果AB∥CDAD∥BCBDABCDACBDACO平行四边形的性质:边平行四边形的对边平行平行四边形的对边相等角平行四边形的对角相等平行四边形的邻角互补对角线平行四边形的对角线互相平分∵四边形ABCD是平行四边形∴AB=CDAD=BC∴AB∥CDAD∥BCDBCA0180BAODOBOCOA学习目标1.在探索平行四边形的判定条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.18.1.2平行四边形的判定学习重点:平行四边形的判定方法及应用.学习难点:平行四边形的判定定理与性质定理的灵活应用.探究1.如图,将两长两短的四根木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边。转动这个四边形,使它的形状改变,在图形变化过程中,它一直是一个平行四边形吗?猜测:两组对边分别相等的四边形是平行四边形。已知:四边形ABCD,AB=CD,AD=BC求证:四边形ABCD是平行四边形证明:连结AC在△ABC和△CDA中∴△ABC≌△CDA(SSS)∴∠1=∠2,∠3=∠4(全等三角形的对应角相等)∴AB∥CD,AD∥BC(内错角相等,两直线平行)DBAC2134AB=CD(已知)AD=CB(已知)AC=CA(公共边)∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形平行四边形的判定定理1:符号语言:∵AB=CD,AD=BC∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)ABCD方法二ABCD求证:四边形ABCD是平行四边形。证明:连接AC∵AD∥BC∴∠DAC=∠ACB又∵AD=BC,AC=AC,∴ΔABC≌ΔCDA∴∠BAC=∠ACD∴AB∥CD∴四边形ABCD是平行四边形已知:在四边形ABCD中,ADBC。(两组对边分别平行的四边形是平行四边形)你还有其他证法吗?一组对边平行且相等的四边形是平行四边形平行四边形的判定定理2:符号语言:∵ABCD∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)ABCD方法三DABC两组对角分别相等的四边形是平行四边形?猜想,对吗?已知:四边形ABCD,∠A=∠C,∠B=∠D求证:四边形ABCD是平行四边形证明:∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)同理可证AB∥CD又∵∠A+∠B+∠C+∠D=360°∴2∠A+2∠B=360°∵∠A=∠C,∠B=∠D(已知)即∠A+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)ABCD两组对角分别相等的四边形是平行四边形平行四边形的判定定理3:符号语言:ABCD∵∠A=∠C,∠B=∠D∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形)方法四探究3如图,将两根木条AC、BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动两根木条,四边形ABCD一直是一个平行四边形吗?猜测:对角线互相平分的四边形是平行四边形。O已知:四边形ABCD,对角线AC、BD相交于点O,且OA=OC,OB=OD求证:四边形ABCD是平行四边形证明:在△AOD和△COB中OA=OC(已知)∠AOD=∠COB(对顶角相等)OD=OB(已知)∴△AOD≌△COB(SAS)∴∠1=∠2AD=CB(全等三角形的对应角、对应边相等)∴AD∥CB(内错角相等,两直线平行)∴四边形ABCD是平行四边形BAC21D(一组对边平行且相等的四边形是平行四边形)对角线互相平分的四边形是平行四边形?对角线互相平分的四边形是平行四边形平行四边形的判定定理4:符号语言:ABCDO∵OA=OC,OB=OD∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形)方法五从边来判定1、两组对边分别平行的四边形是平行四边形2、两组对边分别相等的四边形是平行四边形3、一组对边平行且相等的四边形是平行四边形从角来判定两组对角分别相等的四边形是平行四边形从对角线来判定两条对角线互相平分的四边形是平行四边形平行四边形的判定方法判定文字语言图形语言符号语言定义两组对边分别平行的四边形是平行四边形∵AB∥CD,AD∥BC∴…是平行四边形定理1两组对边分别相等的四边形是平等四边形∵AB=CD,AD=BC∴…是平行四边形定理2对角线互相平分的四边形是平行四边形∵OA=OC,OB=OD∴…是平行四边形推论两组对角分别相等的四边形是平行四边形∵∠A=∠C,∠B=∠D∴…是平行四边形ABCDABCDABCDABCDO试一试1.如图,□ABCD中,AE、CF分别是∠BAD、∠DCB是平分线。求证:四边形AECF是平行四边形。DABCEF试一试1.如图,□ABCD的对角线AC、BD相交于点O,E、F在对角线AC上,且AE=CF。求证:四边形BFDE是平行四边形。CDABEFOABCDEF2.如图,AB=DC=EF,AD=BC,DE=CF,则图中有哪些互相平行的线段?AB∥DC∥EFAD∥BCDE∥CF3、请你识别下列四边形哪些是平行四边形?为什么?ADCB110°70°110°⑴⑷⑶ABCD120°60°5㎝5㎝ABCDOBADC4.8㎝4.8㎝⑵7.6㎝7.6㎝4、在下列条件中,不能判定四边形是平行四边形的是()(A)AB∥CD,AD∥BC(B)AB=CD,AD=BC(C)AB∥CD,AB=CD(D)AB∥CD,AD=BC(E)AB∥CD,∠A=∠CDBDAC(两组对边分别平行)(两组对边分别相等)(一组对边平行且相等)(两组对角分别相等)ABDC大显身手DABCEF证法1:四边形ABCD是平行四边形AD∥BC且AD=BCEAD=FCBAE=CFEAD=FCBAD=BCAED≌CFB(SAS)DE=BF四边形BFDE是平行四边形在AED和CFB中同理可证:BE=DF1.已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。求证:四边形BFDE是平行四边形大显身手1.已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。求证:四边形BFDE是平行四边形DOABCEF证法2:作对角线BD,交AC于点O。∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵AE=CF∴AO-AE=CO-CF∴EO=FO又BO=DO∴四边形BFDE是平行四边形2.已知:如图,E,F分别是的边AD,BC的中点。求证:BE=DF.ABCDDFECBA证明:∵四边形ABCD是平行四边形,∴AB∥CD(平行四边形的定义)AD=BC(平行四边形的对边分别相等),∵E,F分别是AD,BC的中点,∴ED=BF,即EDBF.∥﹦∴四边形EBFD是平行四边形(一组对边平行并且相等的四边形是平行四边形)。∴BE=DF(平行四边形的对边分别相等)。练一练如图,□ABCD中,E、F分别是边BC、DA上的点,且BE=DF。求证:四边形AECF是平行四边形。DABCEF探究5任意画一个△ABC,取AB、AC边上的中点D、E,连接DE。通过观察和猜测,DE和BC有什么关系?ABCDE位置关系怎样?大小关系怎样?三角形中位线的定义:连接三角形两边中点的线段叫三角形的中位线。ABCDE猜测:三角形的中位线平行于三角形的第三边,且等于第三边的一半。证一证ABCDEF中线(中位线)加倍法已知:△ABC中,D、E是△ABC的边AB、AC的中点。求证:DE∥BC,DE=BC。21三角形的中位线平行于三角形的第三边,且等于第三边的一半。三角形中位线定理练一练如图,D、E、F分别是△ABC的边AB、BC、CA的中点,以这些点为顶点,你能在图中画出多少个平行四边形?ABCDFE若△ABC的周长为12,你知道△DEF的周长吗?拓展1.如图,点E、F是□ABCD的对角线AC上两点,要使四边形DEBF是平行四边,还需添加一个什么条件?利用已知条件和你添加的条件,证明四边形DEBF是平行四边形。DABCEF2.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE。(1)求证:△CBE≌△ACD;(2)点D在线段BC上何处时,四边形CDEF是平行四边形,且∠DEF=30°,证明你的结论。CABEFCFD你能告诉我这节课的收获吗?
本文标题:18.1.2平行四边形的判定第一课时
链接地址:https://www.777doc.com/doc-3387408 .html