您好,欢迎访问三七文档
设y=f(x),若y=f(x)可导,则f'(x)是x的函数.若f'(x)仍可导,则可求f'(x)的导数.记作(f'(x))'=f''(x).称为f(x)的二阶导数.若f''(x)仍可导,则又可求f''(x)的导数,….§4-3高阶导数一般,设y=f(x)的导数y'=f'(x)存在且仍可导,记f'(x)的导数为).(,dd22xfyxy或,))(()(dd,22xfxfyxy即))(()(dd,)3()3(33xfxfyxyy记仍可导若称为f(x)的三阶导数.二阶导数.称为f(x)的))(()(dd,,)1()()()1(xfxfyxyynnnnnn记仍可导若一般称为f(x)的n阶导数.二阶以上的导数都称为高阶导数.记Cm(I)为区间I上所有具有m阶连续导数的函数所成集合.为统一符号,有时记y(0)=y,y(1)=y',y(2)=y''.例1.设物体作变速运动.在[0,t]这段时间内所走路程为S=S(t),指出S''(t)的物理意义.解:我们知道,S'=V(t).而S''=V'(t)注意到,V=V(t+t)V(t)表示在[t,t+t]这段时间内速度V(t)的增量(改变量).从而.度这段时间内的平均加速表示在tatV故).(lim0tatVt即,S''=V'(t)=a(t)为物体在时刻t的加速度.例2..)1()(2432yyyxxy满足验证解:43xxy411x.)4(12xy4)4()4(2xxy从而3222)4(241)4(12)1()(2xxxyyy=03)4(2x例3.解:y'=nxn–1,.,,)1()(nnnyynxy和求为正整数设y''=n(n–1)xn–2,y(3)=n(n–1)(n–2)xn–3,…,y(n)=n(n–1)…3·2·1xn–n=n!而y(n+1)=(n!)'=0易见,若f(x),g(x)均存在n阶导数,则)()()()()()()(xgxfxgxfnnn类似,设f(x)=a0xn+a1xn–1+a2xn–2+…+an–1xn+an,为n次多项式,则f(n)(x)=a0n!,而f(n+1)(x)=0例4..),1,0(,)2(,)1()(nxxyaaayey求设解:(1)y'=ex,y''=ex2,y(3)=ex3,…,故y(n)=exn.特别,取=1,得(ex)(n)=ex(ax)(n)=(exlna)(n)取=–1,得(e–x)(n)=(–1)(n)ex.(2)由于ax=exlna,由(1)得=ax(lna)n=exlna(lna)n例5.求y=sinx的n阶导数y(n).解:我们知道y'=cosx,y''=–sinx,y(3)=–cosx,y(4)=sinx,…但y(n)的通项公式难写,并且不好记.).2sin(cosxx由于从而)(sinxy).2sin(x=cosx)2sin(xy)2cos(x).22sin(x)22sin()3(xy)22cos(x).23sin(x)()()(sinnnxy故).2sin(nx).2cos()(cos,)(nxxn类似例6.设y=sin2x,求y(n).解:y'=(sin2x)'y''=(sin2x)'=sin2x.=2sinxcox2)22sin(x,2)222sin(2)3(xy…….22)1(2sin1)(nnnxy例7.求y=ln(1+x)的n阶导数.解:,11xy1)1(xy2)1(x,)1)(2)(1(3)3(xy,)1)(3)(2)(1(4)4(xy……nnnxny)1()!1()1(,1)(一般.)(!)1()1(,1)(nnnaxnax类似定理1.设u=u(x),v=v(x)在点x处具有n阶导数,则u·v=u(x)v(x)在点x处也有n阶导数,且nkkknknnvuCvu0)()()()(证:用数学归纳法证明.当n=1时,(uv)'=u'v+v'u,公式成立.设n=m时公式成立,即mkkkmkmmvuCvu0)()()()(两边求导,得到当n=m+1时,有mkkkmkmmvuCvu0)()()1()()(mkkkmkkmkmvuvuC0)1()()()1(][][)2()1()1()(1)1()()0()1(0vuvuCvuvuCmmmmmm][)1()0()()1(mmmmvuvuC)1()0()()1(1)1()(10)0()1(0)()(mmmmmmmmmmmmmvuCvuCCvuCCvuC)(11kmkmkmCCC由于10)()1(1mkkkmkmvuC例8.设y=x2sinax的10阶导数y(10)解:y=sin(ax)x2,记u=sinax,v=x2由于v(3)=v(4)=v(10)=0而nnanaxu)2sin()(故2)28sin(452)29sin(10)210sin(89210axaxaxaxaxaaxaaxxaaxxasin90cos20sin89210)2()8(210)1()9(110)0()10(010)10(vuCvuCvuCy例9.设.,11)(2nyxy求解:注意到)1111(21)1)(1(1xxxxy故])11()11[(21)1111(21)()()()(nnnnxxxxy由于1)()(!)1()1(nnnaxnax故11)()1(!)1()1(!)1[(21nnnnnxnxny])1(1)1(1[2!)1(11nnnxxn一般,若.))((1dcxbaxy则y可分解成.dcxBbaxAy其中A,B可用待定系数法确定.从而可按例9的方法求y(n).例10.求由方程xy+siny=0所确定的隐函数y=y(x)的二阶导数.解:先求y=y(x)的一阶导数.两边对x求导,y是x的函数0'cos'1yyy解出y',yycos11'再求y'',xyy)cos11(''.)cos1('sin2yyyxyy)cos1()cos1()1(2将y'的表达式代入得3)cos1(sin''yyy例11.设y=y(x)由ex+yxy=1所定,求y''(0).解:方程两边对x求导,y是x的函数,得(1+y')ex+yyxy'=0易见,当x=0时,y=0,且y'(0)=1.方程(1+y')ex+yyxy'=0两边再对x求导,此时,y,y'都是x的函数,有y''ex+y+(1+y')2ex+yy'(y'+xy'')=0即y''ex+y+(1+y')2ex+y2y'xy''=0.将x=0,y=0,及y'(0)=1代入,得y''(0)=2现在有参数方程x=(t))(')(''ttyx因此)(')(')('d'ddd22t'ttxyxytx设参数方程x=(t)y=(t)?dd)(')('dd22xyttxy,如何求则.,)(')('dd'的函数仍是记tttxyyx).'(dd)''(dd22xxxyxyxy而例12.设x=acos3ty=asin3t,求.dd22xy解:一阶导数)cos()sin(dd33tataxy.tgt得到x=acos3ttxytgdd)sin(cos3cossin322ttatta从而)dd(dddd22xyxxy.cscsec314ttattatsincos3sec22)'cos()'tg(3tat例13.设x=a(tsint)y=a(1cost).dd22xy,求解:)cos1(sinddtataxy得到2ctgddtxyx=a(tsint)2ctgt2sin22cos2sin22tttttcos1sin从而)dd(dddd22xyxxy2)cos1(1ta)cos1(2csc212tat))'sin(()'2ctg(ttat例14.?)0(,0,sin0,)(2是否存在问设fxxxxxxf解:x=0是分段函数f(x)的分段点.由定义,f''(0)=(f'(x))'|x=0xfxfx)0()0(lim0xfxfx)0()(lim0因此,为讨论f''(0),须求出f'(x)及f'(0).(1)xfxffx)0()(lim)0(00sinlim0xxxxxfxffx)0()(lim)0(00lim20xxx故f'(0)=0.(2)当x0时,f(x)=x2.从而f'(x)=2x.当x0时,f(x)=sinx–x.从而f'(x)=cosx–1.综合(1),(2),0,1cos0,00,2)(xxxxxxf(3))0(f由于xxfx)(lim0而xxfx)(lim0故f''(0)不存在.02sin2lim1coslim200xxxxxxxxfxfxfxx)(lim)0()(lim0022lim0xxx例15..)0(|,|3)()(22nfxxxxfn存在的最高阶数求使设解:,0,40,2)(33xxxxxff(0)=0当x0时,0,120,6)(22xxxxxf04lim)(lim)0(300xxxxffxx02lim)(lim)0(300xxxxffxx即f'(0)=0.,0,120,6)(22xxxxxf从而f'(0)=0.同理,0,240,12)(xxxxxff''(0)=0..)0()3(不存在但f事实上,2424lim)(lim)0(00)3(xxxxffxx,1212lim)(lim)0(00)3(xxxxffxx故f(3)(0)不存在.使f(n)(0)存在的最高阶数n=2.例16.设解:法1.x't=2..dd,12222xytetxy求第二个方程两边对t求导,y是t的函数.得02tyetyytety2从而.ddyetxy,2ddtxetxyy即,2ytetyx't=2.)(ddtyytyetexy)2(yyytetee).21(2yyete从而ttxxyxydddd22).21(212yyete法2.,122tetxy消参数t,得.1412xey两边对x求导,得.021xyey即.21yxey.21yxeyyxey21))((21yxeeyy.211212yyexe
本文标题:高阶导数
链接地址:https://www.777doc.com/doc-3391860 .html