您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 15.3.2_分式方程的应用 新版八年级数学上册
新人教版八(下)第15章分式课件15.3.2分式方程的应用点此播放教学视频两个工程队共同参与一项筑路工程,甲队单施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个的施工队速度快?例题3:31分析:甲队1个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队完成总工程的,两队半个月完成总工程的。x1612x1x2161根据工程的实际进度,得:由以上可知,若乙队单独工作一个月可以完成全部任务,对比甲队1个月完成任务的,可知乙队施工速度快。解:设乙队如果单独施工1个月能完成总工程的x11216131x方程两边同乘以6x,得:xxx632解得:x=1检验:x=1时6x≠0,x=1是原方程的解。答:乙队的速度快。练习:某工程队需要在规定日期内完成。若甲队单独做正好按时完成;若乙队单独做,超过规定日期三天才能完成。现由甲、乙合作两天,余下工程由乙队单独做,恰好按期完成,问规定日期是多少天?解;设规定日期是x天,根据题意,得:13xxx2方程两边同乘以x(x+3),得:2(x+3)+x2=x(x+3)解得:x=6检验:x=6时x(x+3)≠0,x=6是原方程的解。答:规定日期是6天。练习:P37练习1分析:这里的字母v、s表示已知数据,设提速前列车的平均速度为x千米∕小时,先考虑下面的空:从2004年5月起某列车平均提速v千米∕小时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?例题4:提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为千米∕小时,提速后列车运行(s+50)千米所用的时间为小时。xs(x+v)vx50s根据行驶的等量关系,得:解:设提速前这次列车的平均速度为x千米∕小时,则提速前它行驶s千米所用的时间为小时,提速后列车的平均速度为(x+v)千米∕小时,提速后它运行(s+50)千米所用的时间为小时。vx50svx50sxs方程两边同乘以x(x+v),得:s(x+v)=x(s+50)解得:50svx检验:由于v,s都是正数,时x(x+v)≠0,50svx50sv是原方程的解。答:提速前列车的平均速度为千米/小时50sv总结:列分式方程解应用题的方法和步骤如下:1:审题分析题意2:设未知数3:根据题意找相等关系,列出方程;4:解方程,并验根(对解分式方程尤为重要)5:写答案点此播放讲课视频重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半。后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半。乙型挖土机单独挖这块地需要几天?(1)设乙型挖土机单独挖这块地需要x天,那么它1天挖土量是这块地的_______;21811x分析:请完成下列填空:(2)甲型挖土机1天挖土量是这块地的______;(3)两台挖土机合挖,1天挖土量是这块地的_____.8121x1例4;从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行使s千米,提速后比提速前多行使50千米,提速前列车的平均速度为多少?分析:这里的字母表示已知数据v,s,提速前列车的平均速度x千米/时列车提速前行使s千米所用的年时间为小时,列车提速后的平均速度为千米/时,列车提速后行使(x+50)千米所用的时间为小时,vxsxs50vxsxs50例题欣赏vx解设列车提速前行使的速度为x千米/时,根据行使的时间的等量关系,得例4;从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行使s千米,提速后比提速前多行使50千米,提速前列车的平均速度为多少?vxsxs50解得50svx经检验:x=是原方程的解50svx答:提速前列车的速度为千米/时50svx例题欣赏我部队到某桥头阻击敌人,出发时敌军离桥头24Km,我部队离桥头30Km,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队急行军的速度。等量关系:我军的时间=敌军的时间解:设敌军的速度为X千米/时,则我军为1.5X千米/时。由题意得方程:6048X241.5X30路程速度时间敌军我军2430x1.5x24/x30/1.5x6048?–设敌军的速度为X千米/时桥敌军我军24Km30Km农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度。请审题分析题意分析:设自行车的速度是x千米/时,汽车的速度是3x千米/时请根据题意填写速度、时间、路程之间的关系表速度(千米/时)路程(千米)时间(时)自行车汽车x3x1515x153x15请找出可列方程的等量关系农机厂某地BC自行车先走时32同时到达解:设自行车的速度为x千米/时,那么汽车的速度是3x千米/时,依题意得:汽车所用的时间=自行车所用时间-时32设元时单位一定要准确即:x153232x15x515=45-2x2x=30x=15经检验,15是原方程的根由x=15得3x=45答:自行车的速度是15千米/时,汽车的速度是45千米/时得到结果记住要检验。例1:农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度。x315工厂生产一种电子配件,每只成本为2元,利率为25%.后来通过工艺改进,降低成本,在售价不变的情况下,利率增加了15%.问这种配件每只的成本降低了多少?成本成本售价利率原售价=现售价分析设这种配件每只的成本降低了x元,成本成本售价利率现现现现成本成本售价利率现现原现15%利率利率原根据现%15%2522%2512xx143x答这种配件每只的成本降低了元。143经检验,.x=是原方程的根143工厂生产一种电子配件,每只成本为2元,利率为25%.后来通过工艺改进,降低成本,在售价不变的情况下,利率增加了15%.问这种配件每只的成本降低了多少?成本成本售价利率售价=成本(1+利率)抓住原售价=现售价,得现售价=现成本(1+现利率)原售价=原成本(1+原利率)分析设这种配件每只的成本降低了x元,%4012%2512x143x答这种配件每只的成本降低了元。143一轮船往返于A、B两地之间,顺水比逆水快1小时到达。已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度。速度(千米/小时)时间(小时)路程(千米)顺水逆水假设:轮船在静水中的速度是X千米/小时。根据题意得:顺水比逆水快一个小时到达。X+2X-28080280x280x80X-2-80X+2=1一轮船往返于A、B两地之间,顺水比逆水快1小时到达。已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度。X=-18(不合题意,舍去)80X-2-80X+2=1解:设船在静水中的速度为X千米/小时。X2=32480X+160-80X+160=X2-4X=±18检验得:X=18答:船在静水中的速度为18千米/小时。点此播放解析视频总结:1、列分式方程解应用题,应该注意解题的五个步骤。2、列方程的关键是要在准确设元(可直接设,也可间节设)的前提下找出等量关系。3、解题过程注意画图或列表帮助分析题意找等量关系。4、注意不要漏检验和写答案。请同学总结该节课学习的内容小结:利用分式方程解决实际问题。作业:P38习题16.3第3、4、5题点此播放名师视频
本文标题:15.3.2_分式方程的应用 新版八年级数学上册
链接地址:https://www.777doc.com/doc-3402377 .html