您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 指导书-电力拖动自动控制系统课程设计 (1)
1注意事项:(1)室内请勿抽烟。(2)因条件有限,请注意安全。(3)装置上凡画有地线符号且接线帽为黑色的接线柱皆为控制回路地线,是控制回路各点电平的参考点,也是控制回路的公共点。(4)主回路和控制回路之间无任何公共点,相互独立,两者之间不能有任何连线。(5)示波器的两线输入都是以其外壳为参考点,即示波器两线输入之间有公共点,不是相互独立的,不可同时观察主回路和控制回路。(6)观察幅值在40伏以上的波形时,必须用示波器的高压探头。(7)在用万用表测量前,必须检查万用表开关所在的位置。2目录DJDK-1型直流调速系统设计装置简介―――――――――――――――1第一章DJDK-1型直流调速系统设计的基本要求和安全操作说明――――15第二章概述――――――――――――――――――――――――――19第三章单元调试―――――――――――――――――――――――――20第四章参数测量与计算――――――――――――――――――――――25第五章系统调试―――――――――――――――――――――――――29第六章系统指标测试―――――――――――――――――――――――323DJDK-1型直流调速系统设计装置简介1-1控制屏介绍及操作说明一、特点(1)设计装置采用挂件结构,可根据不同设计内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能够很好的完成《直流调速系统》课程设计。(2)设计装置占地面积小,节约设计室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;设计装置只需三相四线的电源即可投入使用,设计室建设周期短、见效快。(3)设计机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用设计机组。(4)装置布局合理,外形美观,面板示意图明确、清晰、直观;设计连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有设计桌,桌面上可放置机组、示波器等设计仪器,操作舒适、方便。电机采用导轨式安装,更换机组简捷、方便;设计台底部安装有轮子和不锈钢固定调节机构,便于移动和固定。(5)控制屏供电采用三相隔离变压器隔离,设有电压型漏电保护装置和电流型漏电保护装置,切实保护操作者的安全,为开放性的设计室创造了安全条件。(6)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,不能互插。(7)设计线路选择紧跟教材的变化,完全配合教学内容,满足教学大纲要求。二、技术参数图1-1DJDK-1电力电子技术及电机控制实验装置外形图4(1)输入电压三相四线制380V±10%50Hz(2)工作环境环境温度范围为-5—40℃,相对湿度75%,海拔1000m(3)装置容量:<1.5kVA(4)电机输出功率:<200W(5)外形尺寸:长×宽×高=1870㎜×730㎜×1600㎜。见图1-11-2DJK01电源控制屏电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源等;同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警记录仪,供教师考核学生实验之用;在控制屏正面的大凹槽内,设有两根不锈钢管,可挂置实验所需挂件,凹槽底部设有12芯、10芯、4芯、3芯等插座,从这些插座提供有源挂件的电源;在控制屏两边设有单相三极220V电源插座及三相四极380V电源插座,此外还设有供实验台照明用的40W日光灯。图1-2主控制屏面板图1、三相电网电压指示三相电网电压指示主要用于检测输入的电网电压是否有缺相的情况,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。2、定时器兼报警记录仪平时作为时钟使用,具有设定实验时间、定时报警和切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。(具体操作方法详见DJDK-1型电力电子技术及电机控制实验装置使用说明书)3、电源控制部分它的主要功能是控制电源控制屏的各项功能,它由电源总开关、启动按钮及停5止按钮组成。当打开电源总开关时,红灯亮;当按下启动按钮后,红灯灭,绿灯亮,此时控制屏的三相主电路及励磁电源都有电压输出。4、三相主电路输出三相主电路输出可提供三相交流200V/3A或240V/3A电源。输出的电压大小由“调速电源选择开关”控制,当开关置于“直流调速”侧时,A、B、C输出线电压为200V,可完成电力电子实验以及直流调速实验;当开关置于“交流调速”侧时,A、B、C输出线电压为240V,可完成交流电机调压调速及串级调速等实验。在A、B、C三相附近装有黄、绿、红发光二极管,用以指示输出电压。同时在主电源输出回路中还装有电流互感器,电流互感器可测定主电源输出电流的大小,供电流反馈和过流保护使用,面板上的TA1、TA2、TA3三处观测点用于观测三路电流互感器输出电压信号。5、励磁电源在按下启动按钮后将励磁电源开关拨向“开”侧,则励磁电源输出为220V的直流电压,并有发光二极管指示输出是否正常,励磁电源由0.5A熔丝做短路保护,由于励磁电源的容量有限,仅作为直流电机提供励磁电流,故一般不能作为大电流的直流电源使用。6、面板仪表面板下部设置有±300V数字式直流电压表和±5A数字式直流电流表,精度为0.5级,能为可逆调速系统提供电压及电流指示;面板上部设置有500V真有效值交流电压表和5A真有效值交流电流表,精度为0.5级,供交流调速系统实验时使用。1-3各挂件功能介绍以挂件的编号次序分别介绍其使用方法,并简单说明其工作原理及单元电路原理图。图1-3三相变流桥路面板图6一、DJK02挂件(晶闸管主电路)该挂件装有12只晶闸管、直流电压和电流表等,其面板如图1-3所示。1、三相同步信号输出端同步信号是从电源控制屏内获得,屏内装有/Y接法的三相同步变压器,和主电源输出同相,其输出相电压幅度为15V左右,供DJK02-1内的KC04集成触发电路,产生移相触发脉冲;只要将本挂件的12芯插头与屏相连接,则输出相位一一对应的三相同步电压信号;接口的详细情况详见附录相关内容。2、正、反桥脉冲输入端从DJK02-1来的正、反桥触发脉冲分别通过输入接口,加到相应的晶闸管电路上;接口的详细情况详见附录相关内容。3、正、反桥钮子开关从正、反桥脉冲输入端来的触发脉冲信号通过“正、反桥钮子开关”接至相应晶闸管的门极和阴极。面板上共设有十二个钮子开关,分为正、反桥两组,分别控制对应的晶闸管的触发脉冲;开关打到“通”侧,触发脉冲接到晶闸管的门极和阴极;开关打到“断”侧,触发脉冲被切断;通过钮子开关的拨动可以模拟晶闸管失去脉冲的故障情况。4、三相正、反桥主电路正桥主电路和反桥主电路分别由六只5A/1000V晶闸管组成;其中由VT1~VT6组成正桥元件(一般不可逆、可逆系统的正桥使用正桥元件);由VT1ˊ~VT6ˊ组成反桥元件(可逆系统的反桥以及需单个或几个晶闸管的实验可使用反桥元件);所有这些晶闸管元件均配置有阻容吸收及快速熔断丝保护,此外正桥还设有压敏电阻接成三角形,起过压吸收。5、电抗器实验主回路中所使用的平波电抗器装在电源控制屏内,其各引出端通过12芯的插座连接到DJK02面板的中间位置,有3档电感量可供选择,分别为lOOmH、2O0mH、700mH(各档在1A电流下能保持线性),可根据实验需要选择合适的电感值。电抗器回路中串有3A熔丝保护,熔丝座装在电抗器旁。6、直流电压表及直流电流表面板上装有300V的带镜面直流电压表、2A的带镜面直流电流表,均为中零式,精度为1.0级,为可逆调速系统提供电压及电流指示。二、DJK02-1挂件(三相晶闸管触发电路)该挂件装有三相触发电路和正反桥功放电路等,面板图如图1-4。1、移相控制电压Uct输入及偏移电压Ub观测及调节Uct及Ub用于控制触发电路的移相角;在一般的情况下,我们首先将Uct接地,调节Ub,以确定触发脉冲的初始位置;当初始触发角定下后,在以后的调节中只调节Uct的电压,这样确保移相角不会大于初始位置;如在逆变实验中初始移相角α=150o定下后,无论调节Uct,都能保证β30O,防止出现逆变颠覆的情况。2、触发脉冲指示在触发脉冲指示处设有钮子开关用以控制触发电路,开关拨到左边,绿色发光管亮,在触发脉冲观察孔处可观测到后沿固定、而前沿可调的宽脉冲链;开关拨到右边,红色发光管亮,触发电路产生互差60o的双窄脉冲。73.三相同步信号输入端通过专用的十芯扁平线将DJK02上的“三相同步信号输出端”与DJK02-1“三相同步信号输入端”连接,为其内部的触发电路提供同步信号;同步信号也可以从其他地方提供,但要注意相序的问题;接口的详细情况详见附录相关内容。4、锯齿波斜率调节与观测孔打开挂件的电源开关,由外接同步信号经KC04集成触发电路,产生三路锯齿波信号,调节相应的斜率调节电位器,可改变相应的锯齿波斜率,三路锯齿波斜率应保证基本相同,使六路触发信号保持同时出现,且双窄脉冲间隔基本一致。5、控制电路其线路原理如图1-5所示。在由原KC04、KC41和KC42三相集成触发电路的基础上,又增加了4066、4069芯片,可产生三相六路互差60°的双窄脉冲或三相六路后沿固定、前沿可调的宽脉冲链,供触发晶闸管使用。在面板上设有三相同步信号观测孔、两路触发脉冲观测孔。VT1~VT6为单脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“窄脉冲”);VT1’~VT6’为双脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“窄脉冲”)。图1-4三相触发电路面板图8图1-6功放电路原理图三相同步电压信号从每个KC04的“8”脚输入,在其“4”脚相应形成线性增加的锯齿波,移相控制电压Uct和偏移电压Ub经叠加后,从“9”脚输入。当触发脉冲选择的钮子开关拨到窄脉冲侧时,通过控制4066(电子开关),使得每个KC04从“1、15”脚输出相位相差180°的单窄脉冲(可在上面的脉冲观测孔观测到),窄脉冲经KC41(六路双脉冲形成器)后,得到六路双窄脉冲(可在下面的脉冲观测孔观测到)。将钮子开关拨到宽脉冲侧时,通过控制4066,使得KC04的“1、15”脚输出宽脉冲,同时将KC41的控制端“7”脚接高电平,使KC41停止工作,宽脉冲则通过4066的“3、9”两脚直接输出。4069为反相器,它将部分控制信号反相,控制4066;KC42为调制信号发生器,对窄脉冲和宽脉冲进行高频调制。具体有关KC04、KC41、KC42的内部电路原理图,请查阅附录中的相关内容。6、正、反桥功放电路正、反桥功放电路的原理以正桥的一路为例,如图1-6所示;由触发电路输出的脉冲信号经功放电路中的V2、V3三极管放大后由脉冲变压器T1输出。Ulf即为DJKO2面板上的Ulf,接地才可使V3工作,脉冲变压器输出脉冲;正桥共有六路功放电路,其余的五路电路完全与这一路一致;反桥功放和正桥功放线路完全一致,只是控制端不一样,将Ulf改为Ulr。7、正桥控制端Ulf及反桥控制端Ulr这两个端子用于控制正反桥功放电路的工作与否,当端子与地短接,表示功放电路工作,触发电路产生的脉冲经功放电路从正反桥脉冲输出端输出;悬空表示功放不工作;Ulf控制正桥功放电路,Ulr控制反桥。8、正、反桥脉冲输出端经功放电路放大的触发脉冲,通过专用的20芯扁平线将DJK02“正反桥脉冲输入端”与DJK02-1上的“正反桥脉冲输出端”连接,为其晶闸管提供相应的触发脉冲;接口的详细情况详见附录相关内容。9图1-5触发电路原理图三、DJK04挂件(电机调速控制实验I)该挂件主要完成电机调速实验,如单闭环直流调速实验、双闭环直流调速实验、10逻辑无环流等实验。同时和其它挂件配合可增加实验项目,如与DJK18配合使用就可以完成三闭环错位选触无环流可逆直流调速系统实验。DJK04的面板图如下:图1-16DJK04面板图1、电流反馈与过流保护单元有两个功能,一是检测主电源输出的电流反馈信号,二是当主电源输出电流超过某一设定值时发出过流信号切断电源。其
本文标题:指导书-电力拖动自动控制系统课程设计 (1)
链接地址:https://www.777doc.com/doc-3425100 .html