您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 初三数学专题讲义 折叠和对称
1初三数学讲义寒假专题探究:折叠和对称问题教学过程:一、教学衔接(课前环节)1、回收上次课的教案,了解家长的反馈意见;2、检查学生的作业,及时指点3、捕捉学生的思想动态和了解学生的本周学校的学习内容二、知识点解析翻折和对称问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。例题解析例题1.(2012海南省I11分)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△AND≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的长度.2练习1已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).3例题2.在直角坐标系中,C(2,3),C′(-4,3),C″(2,1),D(-4,1),A(0,a),B(a,O)(a0).(1)结合坐标系用坐标填空.点C与C′关于点对称;点C与C″关于点对称;点C与D关于点对称(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求a值.4练习2已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.5例题3.如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.6练习3已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A130,和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比512(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:52.23662.449,,结果可保留根号)7巩固练习1.如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数。83.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.9例题1.(2012海南省I11分)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△AND≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的长度.【答案】(1)证明:∵四边形ABCD是矩形,∴∠D=∠B,AD=BC,AD∥BC。∴∠DAC=∠BCA。又由翻折的性质,得∠DAN=∠NAF,∠ECM=∠BCM,∴∠DAN=∠BCM。∴△AND≌△CBM(ASA)。(2)证明:∵△AND≌△CBM,∴DN=BM。又由翻折的性质,得DN=FN,BM=EM,∴FN=EM。又∠NFA=∠ACD+∠CNF=∠BAC+∠EMA=∠MEC,∴FN∥EM。∴四边形MFNE是平行四边形。四边形MFNE不是菱形,理由如下:由翻折的性质,得∠CEM=∠B=900,∴在△EMF中,∠FEM>∠EFM。∴FM>EM。∴四边形MFNE不是菱形。(3)解:∵AB=4,BC=3,∴AC=5。设DN=x,则由S△ADC=S△AND+S△NAC得3x+5x=12,解得x=32,即DN=BM=32。过点N作NH⊥AB于H,则HM=4-3=1。在△NHM中,NH=3,HM=1,10由勾股定理,得NM=10。∵PQ∥MN,DC∥AB,∴四边形NMQP是平行四边形。∴NP=MQ,PQ=NM=10。又∵PQ=CQ,∴CQ=10。在△CBQ中,CQ=10,CB=3,由勾股定理,得BQ=1。∴NP=MQ=12。∴PC=4-32-12=2。【考点】翻折问题,翻折的性质,矩形的性质,平行的性质,全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定,勾股定理。【分析】(1)由矩形和翻折对称的性质,用ASA即可得到△AND≌△CBM。(2)根据一组对边平行且相等的四边形是平行四边形的判定即可证明。(3)设DN=x,则由S△ADC=S△AND+S△NAC可得DN=BM=32。过点N作NH⊥AB于H,则由勾股定理可得NM=10,从而根据平行四边形的性质和已知PQ=CQ,即可求得CQ=10。因此,在△CBQ中,应用勾股定理求得BQ=1。从而求解。练习1.(2012天津市10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【答案】解:(Ⅰ)根据题意,∠OBP=90°,OB=6。在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t。∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=23,t2=-23(舍去).11∴点P的坐标为(23,6)。(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP。∴∠OPB′=∠OPB,∠QPC′=∠QPC。∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°。∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ。又∵∠OBP=∠C=90°,∴△OBP∽△PCQ。∴OBBPPCCQ。由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-m.∴6t11t6m。∴2111mtt666(0<t<11)。(Ⅲ)点P的坐标为(11133,6)或(11+133,6)。【考点】翻折变换(折叠问题),坐标与图形性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质。【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案。(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案。(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与2111mtt666,即可求得t的值:过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°。∴∠PC′E+∠EPC′=90°。∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A。∴△PC′E∽△C′QA。∴PEPCACCQ。∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,∴22ACCQAQ3612m。∴611t 6m3612m。∵6t11t6m,即611tt6m,∴66=t3612m,即23612m=t。将2111mtt666代入,并化简,得23t22t36=0。解得:12111311+13tt33,。∴点P的坐标为(11133,6)或(11+133,6)。12例题2.(2012黑龙江大庆9分)在直角坐标系中,C(2,3),C′(-4,3),C″(2,1),D(-4,1),A(0,a),B(a,O)(a0).(1)结合坐标系用坐标填空.点C与C′关于点对称;点C与C″关于点对称;点C与D关于点对称(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求a值.【答案】解:(1)(﹣1,3);(2,2);(﹣1,2)。(2)点C关于点(4,2)的对称点P(6,1),△PAB的面积=12(1+a)×6﹣12a2﹣12×1×(6﹣a)=5,整理得,a2﹣7a+10=0,解得a1=2,a2=5。所以,a的值为2或5。【考点】网格问题,坐标与图形的对称变化,坐标与图形性质,三角形的面积。【分析】(1)根据对称的性质,分别找出两对称点连线的中点即可:由图可知,点C与C′关于点(﹣1,3)对称;点C与C″关于点(2,2)对称;点C与D关于点(﹣1,2)对称。(2)先求出点P的坐标,再利用△APB所在的梯形的面积减去两个直角三角形的面积,然后列式计算即可得解。练习2.(2012广东珠海9分)已知,AB是⊙O的直径,点P在弧AB上
本文标题:初三数学专题讲义 折叠和对称
链接地址:https://www.777doc.com/doc-3425635 .html